Student[ODEs]
Test
test the validity of a candidate solution to an ODE
Calling Sequence
Parameters
Description
Examples
Compatibility
Test(sol, ODE, var)
sol
-
equation, or set or list of equations; a candidate solution of an ODE or system of ODEs
ODE
equation, or set or list of equations; an ODE or system of ODEs
var
function, or set or list of functions; the dependent variable(s)
The Test(sol, ODE, y(x)) tests whether the candidate solution sol is in fact a valid solution of the given equation or system ODE.
The equation or system ODE is evaluated using the supplied candidate solution sol, and an attempt is made to remove all occurrences of the dependent variables var and their derivatives; whatever remains is then simplified and returned.
If this remainder is 0 (or a set or list of zeros), then sol is in fact a valid solution.
Conversely, if sol is in fact a valid solution, then this remainder must be mathematically equivalent to 0 (or a set or list of zeros), but it may not have been simplified fully.
with⁡StudentODEs:
ode1≔t2⁢z⁡t+1+z⁡t2⁢t−1⁢diff⁡z⁡t,t=0
ode1≔t2⁢z⁡t+1+z⁡t2⁢t−1⁢ⅆⅆtz⁡t=0
sol1≔Solve⁡ode1,z⁡t
sol1≔z⁡t22−z⁡t+ln⁡z⁡t+1=−t22−t−ln⁡t−1+_C1
Test⁡sol1,ode1,z⁡t
0
ode2≔diff⁡y⁡x,x,x−diff⁡y⁡x,x−x⁢exp⁡x=0
ode2≔ⅆ2ⅆx2y⁡x−ⅆⅆxy⁡x−x⁢ⅇx=0
sol2≔Solve⁡ode2,y⁡x
sol2≔y⁡x=c__1+_C2⁢ⅇx+ⅇx⁢1−x+12⁢x2
Test⁡sol2,ode2,y⁡x
ode3≔diff⁡y⁡x,x,x+5⁢diff⁡y⁡x,x2y⁡x=0
ode3≔ⅆ2ⅆx2y⁡x+5⁢ⅆⅆxy⁡x2y⁡x=0
sol3≔Solve⁡ode3,y⁡x
sol3≔y⁡x=6⁢ⅇc__1⁢x+6⁢_C216,y⁡x=−6⁢ⅇc__1⁢x+6⁢_C216
Test⁡sol3,ode3,y⁡x
ode4≔x3⁢diff⁡y⁡x,x,x,x+3⁢x2⁢diff⁡y⁡x,x,x−6⁢x⁢diff⁡y⁡x,x−6⁢y⁡x=0
ode4≔x3⁢ⅆ3ⅆx3y⁡x+3⁢x2⁢ⅆ2ⅆx2y⁡x−6⁢x⁢ⅆⅆxy⁡x−6⁢y⁡x=0
sol4≔Solve⁡ode4,y⁡x
sol4≔y⁡x=4⁢_C3⁢x5+36⁢_C2⁢x+9⁢c__136⁢x2
Test⁡sol4,ode4,y⁡x
ode5≔diff⁡y1⁡x,x=7⁢y1⁡x+y2⁡x,diff⁡y2⁡x,x=−4⁢y1⁡x+3⁢y2⁡x
ode5≔ⅆⅆxy1⁡x=7⁢y1⁡x+y2⁡x,ⅆⅆxy2⁡x=−4⁢y1⁡x+3⁢y2⁡x
sol5≔Solve:-System⁡ode5,output=solution
sol5≔y1⁡x=−ⅇ5⁢x⁢2⁢_C2⁢x+_C2+2⁢c__14,y2⁡x=ⅇ5⁢x⁢_C2⁢x+c__1
Test⁡sol5,ode5,seq⁡yj⁡x,j=1..2
The Student[ODEs][Test] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
See Also
odetest
Student
Student[ODEs][Solve]
Download Help Document