Student[Statistics]
Correlation
compute the correlation
Calling Sequence
Parameters
Description
Computation
Examples
References
Compatibility
Correlation(X, Y, numeric_option, inert_option)
Correlation(A, B, numeric_option)
Correlation(M, numeric_option)
X
-
algebraic; random variable
Y
A
data sample
B
M
Matrix data sample
numeric_option
(optional) equation of the form numeric=value where value is true or false
inert_option
(optional) equation of the form inert=value where value is true or false
The Correlation function computes the correlation of two data samples or the correlation of multiple data samples in a Matrix.
The first parameter can be a data sample (given as e.g. a Vector), a Matrix data sample, a random variable, or an algebraic expression involving random variables (see Student[Statistics][RandomVariable]).
If the option inert is not included or is specified to be inert=false, then the function will return the actual value of the result. If inert or inert=true is specified, then the function will return the formula of evaluating the actual value.
By default, all computations involving random variables are performed symbolically (see option numeric below).
If there are floating point values or the option numeric is included, then the computation is done in floating point. Otherwise the computation is exact.
By default, the correlation is computed according to the rules mentioned above. To always compute the correlation numerically, specify the numeric or numeric = true option.
with⁡StudentStatistics:
U≔seq⁡57..77
U≔57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77
V≔seq⁡sin⁡i,i=57..77
V≔sin⁡57,sin⁡58,sin⁡59,sin⁡60,sin⁡61,sin⁡62,sin⁡63,sin⁡64,sin⁡65,sin⁡66,sin⁡67,sin⁡68,sin⁡69,sin⁡70,sin⁡71,sin⁡72,sin⁡73,sin⁡74,sin⁡75,sin⁡76,sin⁡77
Correlation⁡U,undefined,V,2
undefined
Correlation⁡Vectorrow⁡1,2,Vectorcolumn⁡π,2
1−π2⁢2π2−12+1−π22
If the computation contains floating point values or the numeric option is included, then a floating point value will be returned.
Correlation⁡Vectorrow⁡1,2.0,Vectorcolumn⁡π,2
−0.999999999566904
Correlation⁡Vectorrow⁡1,2,Vectorcolumn⁡π,2,numeric
−1.00000000000000
Compute the correlation between two random variables.
A≔NormalRandomVariable⁡a,b:
B≔NormalRandomVariable⁡c,d:
Correlation⁡A+B,B
c⁢a+c2+d2−a+c⁢cb2+d2⁢d
P≔NormalRandomVariable⁡2,3:
Q≔NormalRandomVariable⁡1,4:
Correlation⁡P+Q,Q
45
Use the inert option.
X≔PoissonRandomVariable⁡3:
Correlation⁡X,X,inert
∑_t=0∞⁡_t2⁢3_t⁢ⅇ−3_t!−∑_t0=0∞⁡_t0⁢3_t0⁢ⅇ−3_t0!⁢∑_t1=0∞⁡_t1⁢3_t1⁢ⅇ−3_t1!∑_t3=0∞⁡_t3−∑_t2=0∞⁡_t2⁢3_t2⁢ⅇ−3_t2!2⁢3_t3⁢ⅇ−3_t3!⁢∑_t5=0∞⁡_t5−∑_t4=0∞⁡_t4⁢3_t4⁢ⅇ−3_t4!2⁢3_t5⁢ⅇ−3_t5!
Correlation⁡X,X,numeric
0.9999999999
M≔Matrix⁡4,2,1,undefined,2.0,4,π,4,2
M≔421undefined2.04π42
Correlation⁡M
undefinedFloat⁡undefinedundefinedFloat⁡undefined1.−0.188982236506435undefined−0.1889822365064351
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
The Student[Statistics][Correlation] command was introduced in Maple 18.
For more information on Maple 18 changes, see Updates in Maple 18.
See Also
Statistics[Correlation]
Student
Student[Statistics][RandomVariable]
Download Help Document