MomentGeneratingFunction - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Education : Student Packages : Statistics : MomentGeneratingFunction

Student[Statistics]

  

MomentGeneratingFunction

  

compute the moment generating function

 

Calling Sequence

Parameters

Description

Computation

Examples

References

Compatibility

Calling Sequence

MomentGeneratingFunction(X, t, numeric_option, inert_option)

MGF(X, t, numeric_option, inert_option)

Parameters

X

-

algebraic; random variable

t

-

algebraic; point

numeric_option

-

(optional) equation of the form numeric=value where value is true or false

inert_option

-

(optional) equation of the form inert=value where value is true or false

Description

• 

The MomentGeneratingFunction function computes the moment generating function of the specified random variable at the specified point.

• 

The first parameter can be a random variable or an algebraic expression involving random variables (see Student[Statistics][RandomVariable]).

Computation

• 

By default, all computations involving random variables are performed symbolically (see option numeric below).

• 

If the input point is a floating point value, then the output will be given in a floating point. Otherwise, the output is exact.

• 

The value of the moment generating function of the input random variable at the specified point is computed according to the rules mentioned above. To always compute the outcome numerically, specify the numeric or numeric=true option.

Examples

withStudentStatistics:

Compute the moment generating function of the beta random variable with parameters n and p.

MomentGeneratingFunctionBinomialRandomVariablen,p,t

pⅇt+1pn

(1)

Use numeric parameters.

MomentGeneratingFunctionBinomialRandomVariable10,12,3

ⅇ32+1210

(2)

If the numeric option is specified or the second parameter is given in a floating point value, then a floating point value will be returned.

MomentGeneratingFunctionBinomialRandomVariable10,0.5,3,numeric

1.696471963×1010

(3)

MGF functions the same way as MomentGeneratingFunction.

MomentGeneratingFunctionBinomialRandomVariable10,0.5,3.0

1.696471963×1010

(4)

Use the inert option.

MomentGeneratingFunctionBinomialRandomVariable10,12,3,inert

_t=010ⅇ3_t10_t12_t1210_t

(5)

evalfMomentGeneratingFunctionBinomialRandomVariable10,12,3,inert

1.696471965×1010

(6)

Define a new random variable.

X3PoissonRandomVariablea+2ExponentialRandomVariableb:

MGFX,t

ⅇaⅇ3t12bt+1

(7)

References

  

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.

Compatibility

• 

The Student[Statistics][MomentGeneratingFunction] command was introduced in Maple 18.

• 

For more information on Maple 18 changes, see Updates in Maple 18.

See Also

moment generating function

Statistics[MomentGeneratingFunction]

Student

Student[Statistics]

Student[Statistics][RandomVariable]