Student[Statistics]
Skewness
compute the coefficient of skewness
Calling Sequence
Parameters
Description
Computation
Examples
References
Compatibility
Skewness(A, numeric_option)
Skewness(M, numeric_option)
Skewness(X, numeric_option, inert_option)
A
-
data sample
M
Matrix data sample
X
algebraic; random variable
numeric_option
(optional) equation of the form numeric=value where value is true or false
inert_option
(optional) equation of the form inert=value where value is true or false
The Skewness function computes the coefficient of skewness of the specified random variable or data set. In the data set case the following formula for computing the coefficient of skewness is used:
Skewness⁡A=N⁢Moment⁡A,3,origin=Mean⁡AN−1⁢StandardDeviation⁡A3,
where N is the number of elements in A.
The first parameter can be a data sample (e.g., a Vector), a Matrix data sample, a random variable, or an algebraic expression involving random variables (see Student[Statistics][RandomVariable]).
If the option inert is not included or is specified to be inert=false, then the function will return the actual value of the result. If inert or inert=true is specified, then the function will return the formula of evaluating the actual value.
By default, all computations involving random variables are performed symbolically (see option numeric below).
If there are floating point values or the option numeric is included, then the computation is done in floating point. Otherwise the computation is exact.
By default, the skewness is computed according to the rules mentioned above. To always compute the skewness numerically, specify the numeric or numeric = true option.
with⁡StudentStatistics:
Compute the coefficient of skewness of the log normal random variable with parameters μ and σ.
Skewness⁡LogNormalRandomVariable⁡μ,σ
−3⁢ⅇ5⁢σ22+3⁢μ+ⅇ9⁢σ22+3⁢μ+2⁢ⅇ3⁢σ22+3⁢μⅇσ2+2⁢μ⁢ⅇσ2−132
Use numeric parameters for the beta random variable.
Skewness⁡BetaRandomVariable⁡2,7
10⁢3577
Skewness⁡BetaRandomVariable⁡2,7,numeric
0.7683220505
Use the inert option.
Skewness⁡BetaRandomVariable⁡2,7,inert
∫01−56⁢−_t2+∫0156⁢_t12⁢−1+_t16ⅆ_t13⁢_t2⁢−1+_t26ⅆ_t2∫0156⁢−_t0+∫0156⁢_t2⁢−1+_t6ⅆ_t2⁢_t0⁢−1+_t06ⅆ_t032
evalf⁡Skewness⁡BetaRandomVariable⁡2,7,inert
0.7683220503
Consider the following list of data.
A≔1,2,−3,3.0,2,π
Skewness⁡A
−1.22868166495079
Consider the following Matrix data sample.
M≔Matrix⁡3.0,3.8,114,4,ln⁡7,128,π,97,200
M≔3.03.81144ln⁡7128π97200
Compute the skewness of each of the columns.
Skewness⁡M
0.5331979491509490.57659453865099657275⁢6388⁢315302454
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
The Student[Statistics][Skewness] command was introduced in Maple 18.
For more information on Maple 18 changes, see Updates in Maple 18.
See Also
skewness
Statistics[Skewness]
Student
Student[Statistics][RandomVariable]
Download Help Document