Student[Statistics]
StandardDeviation
compute the standard deviation
Calling Sequence
Parameters
Description
Computation
Examples
References
Compatibility
StandardDeviation(A, numeric_option, output_option)
StandardDeviation(M, numeric_option, output_option)
StandardDeviation(X, numeric_option, inert_option, output_option)
A
-
data sample
M
Matrix data sample
X
algebraic; random variable
numeric_option
(optional) equation of the form numeric=value where value is true or false
output_option
(optional) equation of the form output=x where x is value, plot, or both
inert_option
(optional) equation of the form inert=value where value is true or false
The StandardDeviation function computes the standard deviation of the specified data sample or random variable. In the data sample case the unbiased estimate for the variance is used (see Student[Statistics][Variance] for more details).
The first parameter can be a data sample (e.g., a Vector), a Matrix data sample, a random variable, or an algebraic expression involving random variables (see Student[Statistics][RandomVariable]).
If the option output is not included or is specified to be output=value, then the function will return the value of the standard deviation. If output=plot is specified, then the function will return a plot of the input data set and its standard deviation. If output=both is specified, then both the value and the plot of the standard deviation will be returned.
If the option inert is not included or is specified to be inert=false, then the function will return the actual value of the result. If inert or inert=true is specified, then the function will return the formula of evaluating the actual value.
By default, all computations involving random variables are performed symbolically (see option numeric below).
If there are floating point values or the option numeric is included, then the computation is done in floating point. Otherwise the computation is exact.
By default, the standard deviation is computed according to the rules mentioned above. To always compute the standard deviation numerically, specify the numeric or numeric = true option.
with⁡StudentStatistics:
Compute the standard deviation of the beta random variable with parameters p and q.
StandardDeviation⁡BetaRandomVariable⁡p,q
p⁢qp+q+1p+q
Use the numeric or the output=plot option
StandardDeviation⁡BetaRandomVariable⁡3,5,numeric
0.1613743061
StandardDeviation⁡BetaRandomVariable⁡3,5,output=plot
Create a beta-distributed random variable Y and compute the standard deviation of 1Y+2.
Y≔BetaRandomVariable⁡5,2:
StandardDeviation⁡1Y+2
−1356439+16588800⁢ln⁡3⁢ln⁡2−8294400⁢ln⁡22−6708480⁢ln⁡2−8294400⁢ln⁡32+6708480⁢ln⁡32
StandardDeviation⁡1Y+2,numeric
0.02274855629
Compute the standard deviation of a data set, which contains an undefined value
StandardDeviation⁡1,2,4,0,undefined
undefined
Consider the following Matrix data sample.
M≔Matrix⁡4,π,114694,4.2,15,127368,3.0,7,88464
M≔
Compute the standard deviation of each of the columns.
StandardDeviation⁡M
If the output=both option is included, then both the value and the plot of the standard deviation will be returned.
sd1,graph1≔StandardDeviation⁡M,output=both:
sd1
graph1
Use both the output=both option and the inert option.
K≔BinomialRandomVariable⁡5,13:
sd2,graph2≔StandardDeviation⁡K,output=both,inert:
StandardDeviation⁡K,numeric
1.054092553
sd2
∑_t0=05⁡_t0−∑_t=05⁡_t⁢5_t⁢13_t⁢235−_t2⁢5_t0⁢13_t0⁢235−_t0
evalf⁡sd2
graph2
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
The Student[Statistics][StandardDeviation] command was introduced in Maple 18.
For more information on Maple 18 changes, see Updates in Maple 18.
See Also
Statistics[StandardDeviation]
Student
Student[Statistics][RandomVariable]
Download Help Document