Chapter 6: Techniques of Integration
Section 6.1: Integration by Parts
Example 6.1.4
Use integration by parts to establish the formula ∫ⅇa xcosb x ⅆx = ⅇa xa2+b2a cosb x+b sinb x.
Solution
Mathematical Solution
There are two points of note in the requisite calculations: first, it will not matter which of the two functions ⅇa x or cosb x is taken as u; and second, parts integration is applied twice, resulting in the reappearance of the original integral. The resulting equation is then solved for the still unevaluated integral. In the complete calculations that follow, u=ⅇa x in both parts integrations.
∫ⅇa xcosb x ⅆx
=ⅇa xsinb xb−∫a ⅇa xsinb xb ⅆx
=ⅇa xsinb xb−ab∫ⅇa xsinb x ⅆx
=ⅇa xsinb xb−abⅇa x−cosb xb−∫a ⅇa x−cosb xb ⅆx
=ⅇa xsinb xb−ab−ⅇa xcosb xb+ab∫ⅇa xcosb x ⅆx
=ⅇa xsinb xb+ab2ⅇa xcosb x−a2b2∫ⅇa xcosb x ⅆx
1+a2b2 ∫ⅇa xcosb x ⅆx
=ⅇa xsinb xb+ab2ⅇa xcosb x
=b2a2+b2ⅇa xsinb xb+ab2ⅇa xcosb x
=ⅇa xa2+b2a cosb x+b sinb x
In the complete solution that follows, the trig term is taken as u in both instances of parts integration. The outcome is exactly the same.
=ⅇa xcosb xa−∫ⅇa xa−b sinb x ⅆx
=ⅇa xcosb xa+ba∫ⅇa xsinb x ⅆx
=ⅇa xcosb xa+baⅇa xasinb x−∫ⅇa xab cosb x ⅆx
=ⅇa xcosb xa+ba2ⅇa xsinb x−b2a2∫ⅇa xcosb x ⅆx
1+b2a2∫ⅇa xcosb x ⅆx
=ⅇa xcosb xa+ba2sinb x
=a2a2+b2ⅇa xcosb xa+ba2sinb x
Maple Solution
Maple provides a stepwise evaluation of the given integral, resulting in the annotated solution in Table 6.1.4(a).
Tools≻Load Package: Student Calculus 1
Loading Student:-Calculus1
Write the integral, being sure to use the exponential ⅇ. (See Appendix A-2)
Context Panel: Student Calculus1≻All Solution Steps
∫ⅇa x cosb x ⅆx→show solution stepsIntegration Steps∫ⅇa⁢x⁢cos⁡b⁢xⅆx▫1. Apply integration by Parts◦Recall the definition of thePartsrule∫uⅆv=v⁢u−∫vⅆu◦First partu=cos⁡b⁢x◦Second partdv=ⅇa⁢x◦Differentiate first partdu=ⅆⅆxcos⁡b⁢xdu=−sin⁡b⁢x⁢b◦Integrate second partv=∫ⅇa⁢xⅆxv=ⅇa⁢xa∫ⅇa⁢x⁢cos⁡b⁢xⅆx=ⅇa⁢x⁢cos⁡b⁢xa−∫−ⅇa⁢x⁢sin⁡b⁢x⁢baⅆxThis gives:ⅇa⁢x⁢cos⁡b⁢xa−∫−ⅇa⁢x⁢sin⁡b⁢x⁢baⅆx▫2. Apply theconstant multiplerule to the term∫−ⅇa⁢x⁢sin⁡b⁢x⁢baⅆx◦Recall the definition of theconstant multiplerule∫C⁢f⁡xⅆx=C⁢∫f⁡xⅆx◦This means:∫−ⅇa⁢x⁢sin⁡b⁢x⁢baⅆx=−b⁢∫ⅇa⁢x⁢sin⁡b⁢xⅆxaWe can rewrite the integral as:ⅇa⁢x⁢cos⁡b⁢xa+b⁢∫ⅇa⁢x⁢sin⁡b⁢xⅆxa▫3. Apply integration by Parts◦Recall the definition of thePartsrule∫uⅆv=v⁢u−∫vⅆu◦First partu=sin⁡b⁢x◦Second partdv=ⅇa⁢x◦Differentiate first partdu=ⅆⅆxsin⁡b⁢xdu=b⁢cos⁡b⁢x◦Integrate second partv=∫ⅇa⁢xⅆxv=ⅇa⁢xa∫ⅇa⁢x⁢sin⁡b⁢xⅆx=sin⁡b⁢x⁢ⅇa⁢xa−∫ⅇa⁢x⁢b⁢cos⁡b⁢xaⅆxThis gives:ⅇa⁢x⁢cos⁡b⁢xa+b⁢sin⁡b⁢x⁢ⅇa⁢xa−∫ⅇa⁢x⁢b⁢cos⁡b⁢xaⅆxa▫4. Apply theconstant multiplerule to the term∫ⅇa⁢x⁢b⁢cos⁡b⁢xaⅆx◦Recall the definition of theconstant multiplerule∫C⁢f⁡xⅆx=C⁢∫f⁡xⅆx◦This means:∫ⅇa⁢x⁢b⁢cos⁡b⁢xaⅆx=b⁢∫ⅇa⁢x⁢cos⁡b⁢xⅆxaWe can rewrite the integral as:ⅇa⁢x⁢cos⁡b⁢xa+b⁢sin⁡b⁢x⁢ⅇa⁢xa−b⁢∫ⅇa⁢x⁢cos⁡b⁢xⅆxaa▫5. Solve the equation algebraically◦DefineF=∫ⅇa⁢x⁢cos⁡b⁢xⅆx◦Solve forFF=ⅇa⁢x⁢cos⁡b⁢xa+b⁢sin⁡b⁢x⁢ⅇa⁢xa−b⁢FaaThis gives:ⅇa⁢x⁢cos⁡b⁢x⁢a+sin⁡b⁢x⁢ba2+b2
Table 6.1.4(a) Annotated stepwise solution in a specific case
Note that an annotated stepwise solution is available via the Context Panel with the "All Solution Steps" option.
The rules of integration can also be applied via the Context Panel, as per the figure to the right.
Another implementation of this "integrate by parts twice and solve" calculation is done with Maple commands, heavily reliant on the Parts command in the IntegrationTools package. The following calculation in Table 6.1.4(b) takes u=ⅇa x.
Initialize
Load the IntegrationTools package.
withIntegrationTools:
Enter the integral, being sure to use the exponential ⅇ.
Context Panel: 2-D Math≻Convert To≻Inert Form
∫ⅇa xcosb x ⅆx→assign to a nameQ
First parts integration
q1≔PartsQ,ⅇa x
sin⁡b⁢x⁢ⅇa⁢xb−∫sin⁡b⁢x⁢a⁢ⅇa⁢xbⅆx
Second parts integration
q2≔Partsq1,ⅇa x
sin⁡b⁢x⁢ⅇa⁢xb+a⁢cos⁡b⁢x⁢ⅇa⁢xb2+∫−a2⁢cos⁡b⁢x⁢ⅇa⁢xb2ⅆx
Form the equation Q−FQ=0
q3≔Q−q2=0
∫ⅇa⁢x⁢cos⁡b⁢xⅆx−sin⁡b⁢x⁢ⅇa⁢xb−a⁢cos⁡b⁢x⁢ⅇa⁢xb2−∫−a2⁢cos⁡b⁢x⁢ⅇa⁢xb2ⅆx=0
Simplify the left-hand side
q4≔expandq3
∫ⅇa⁢x⁢cos⁡b⁢xⅆx−sin⁡b⁢x⁢ⅇa⁢xb−a⁢cos⁡b⁢x⁢ⅇa⁢xb2+a2⁢∫ⅇa⁢x⁢cos⁡b⁢xⅆxb2=0
Isolate the integral Q
q5≔isolateq4,Q
∫ⅇa⁢x⁢cos⁡b⁢xⅆx=sin⁡b⁢x⁢ⅇa⁢xb+a⁢cos⁡b⁢x⁢ⅇa⁢xb21+a2b2
Simplify the right-hand side
normalq5
∫ⅇa⁢x⁢cos⁡b⁢xⅆx=ⅇa⁢x⁢cos⁡b⁢x⁢a+sin⁡b⁢x⁢ba2+b2
Table 6.1.4(b) Stepwise solution in the general case, with u=ⅇa x
In Table 6.1.4(c), the trig term is taken as u in each parts integration.
q6≔PartsQ,cosb x
ⅇa⁢x⁢cos⁡b⁢xa−∫−ⅇa⁢x⁢sin⁡b⁢x⁢baⅆx
q7≔Partsq6,sinb x
ⅇa⁢x⁢cos⁡b⁢xa+ⅇa⁢x⁢b⁢sin⁡b⁢xa2+∫−ⅇa⁢x⁢b2⁢cos⁡b⁢xa2ⅆx
Form the equation Q−GQ=0
q8≔Q−q7=0
∫ⅇa⁢x⁢cos⁡b⁢xⅆx−ⅇa⁢x⁢cos⁡b⁢xa−ⅇa⁢x⁢b⁢sin⁡b⁢xa2−∫−ⅇa⁢x⁢b2⁢cos⁡b⁢xa2ⅆx=0
q9≔expandq8
∫ⅇa⁢x⁢cos⁡b⁢xⅆx−ⅇa⁢x⁢cos⁡b⁢xa−ⅇa⁢x⁢b⁢sin⁡b⁢xa2+b2⁢∫ⅇa⁢x⁢cos⁡b⁢xⅆxa2=0
q10≔isolateq9,Q
∫ⅇa⁢x⁢cos⁡b⁢xⅆx=ⅇa⁢x⁢cos⁡b⁢xa+ⅇa⁢x⁢b⁢sin⁡b⁢xa21+b2a2
normalq10
Table 6.1.4(c) Stepwise solution in the general case, with u taken as the trig term in each integration
<< Previous Example Section 6.1 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document