Chapter 6: Techniques of Integration
Section 6.4: The Algebra of Partial Fractions
Example 6.4.2
Obtain the partial-fraction decomposition of 7⁢x−23x2−7⁢x+12.
Solution
Mathematical Solution
The denominator, x2−7 x+12, factors to x−3x−4, so the decomposition begins with the identity
7 x−23x−3 x−4=a1x−3+a2x−4
There are many methods for determining the constants ak,k=1,2. The method adopted here is one that is amenable to an eventual Maple implementation of the underlying strategy. Multiply through by the factored denominator, obtaining
7 x−23
=a1x−4+a2x−3
=a1+a2 x+−4 a1−3 a2
For this to be an identity in x, the coefficients of like powers of x on each side of the equal sign must match. Hence, the two equations
a1+a2
=7
−4 a1−3 a2
=−23
must hold. The solution of these equations is a1=2,a2=5, and the partial-fraction decomposition of the given rational function is
7⁢x−23x2−7 x+12=2x−3+5x−4
Maple Solution
Solution by Context Panel
Control-drag the rational function.
Context Panel: Conversions≻Partial Fractions≻x
7⁢x−23x2−7 x+12 → 2x−3+5x−4
Make 7 x−23x−3 x−4=a1x−3+a2x−4 an identity
Control-drag the equation.
Context Panel: Solve≻As Identity Complete the dialog as per figure to the right.
7 x−23x−3 x−4=a1x−3+a2x−4→solve (identity)a1=2,a2=5
The stepwise partial-fractions task template in Table 6.4.2(a) provides an interactive stepwise solution.
Solution by Task Template
Tools≻Tasks≻Browse: Algebra≻Partial Fractions≻Stepwise
Stepwise Partial Fraction Decomposition
Write rational function here
fx=
↓
↓
Write the partial-fraction decomposition template in this box
≡ *
To determine the constants, multiply both sides of the identity (*) by the denominator of the fraction on the left.
=
fx==
Table 6.4.2(a) Task template for an interactive stepwise partial-fraction decomposition
Table 6.4.2(b) contains an interactive solution from first principles. A similar calculation in the form of a recorded demo can be found here.
Interactive solution from first principles
Control-drag the given rational function.
Context Panel: Assign to a Name≻f
7 x−23x−3 x−4→assign to a namef
Enter the decomposition template.
Context Panel: Assign to a Name≻g
a1x−3+a2x−4→assign to a nameg
Write f−g and press the Enter key.
Context Panel: Simplify≻Simplify
Context Panel: Numerator
Context Panel: Collect≻x
Context Panel: Coefficients≻x
Context Panel: Solve≻Solve
Context Panel: Substitute Into≻g
f−g
7⁢x−23x−3⁢x−4−a1x−3−a2x−4
= simplify
−a1−a2+7⁢x+4⁢a1+3⁢a2−23x−3⁢x−4
→numerator
−a1⁢x−a2⁢x+7⁢x+4⁢a1+3⁢a2−23
= collect w.r.t. x
−a1−a2+7⁢x+4⁢a1+3⁢a2−23
→coefficients in x
4⁢a1+3⁢a2−23,−a1−a2+7
→solve
a1=2,a2=5
→substitute into
2x−3+5x−4
Table 6.4.2(b) Interactive solution from first principles
Coded Solution
A command-based conversion to partial fractions is illustrated in Table 6.4.2(c).
Assign the name f to the given rational function.
f≔7⁢x−23x2−7 x+12:
Apply the convert command, with the option parfrac, and the independent variable x.
convertf,parfrac,x
Table 6.4.2(c) Use of the convert command to obtain a partial-fraction decomposition
Table 6.4.2(d) contains a coded solution from first principles.
Coded solution from first principles
Write the basic identity for the partial-fraction decomposition.
q1≔f=g
7⁢x−23x−3⁢x−4=a1x−3+a2x−4
Multiply through by the denominator of the rational function.
q2≔simplifyq1⋅denomf
7⁢x−23=x⁢a1+x⁢a2−4⁢a1−3⁢a2
Form the equation determined by identifying the coefficients of powers of x.
q3≔mapcoeff,q2,x,1
7=a1+a2
Form the equation determined by identifying the coefficients of powers of x0.
q4≔mapcoeff,q2,x,0
−23=−4⁢a1−3⁢a2
Solve the two equations in a1 and a2.
q5≔solveq3,q4
Evaluate the basic partial-fractions identity with the values of the coefficients determined by the solve command.
evalq1,q5
7⁢x−23x−3⁢x−4=2x−3+5x−4
Table 6.4.2(d) Coded solution from first principles
Essentially, the partial-fraction decomposition seeks to determine the parameters (here, a1 and a2) that make equation q1 (in Table 6.4.2(d)) an identity in x. This can be done immediately with the following modification of Maple's solve command.
solveidentityq1,x,a1,a2
<< Previous Example Section 6.4 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document