Chapter 6: Techniques of Integration
Section 6.6: Rationalizing Substitutions
Example 6.6.4
Evaluate the integral ∫12 sinx+3 cosx ⅆx without making the rationalizing substitution z=tanx/2.
Solution
Mathematical Solution
Using elementary trigonometry, write 2 sinx+3 cosx as 13cosx−arctan2/3 so that the given integral becomes
∫12 sinx+3 cosx ⅆx
=113∫dxcosx−arctan2/3
=113∫secx−arctan2/3 dx
=113ln(secx−arctan2/3+tanx−arctan2/3)
This antiderivative is real at each x for which the integrand is defined. The elementary trig that must be applied to the integrand, explicated in Table 6.6.4(a), is based on the formula
cosx−φ=cosxcosφ+sinxsinφ
2 sinx+3 cosx=Acosx3A+sinx2A⇒{cosφ=3/A, and sinφ=2/Acos2φ+sin2φ=9+4A2=1
Consequently, A2=13 and φ=arctan2/3
Table 6.6.4(a) Establishing the identity 2 sinx+3 cosx=13cosx−arctan2/3
Maple Solution
Assign the inert form of the integral to the name Q.
Q≔∫12 sinx+3 cosx ⅆx:
The trig transformation detailed in Table 6.6.4(a) is implemented via the convert command with options phaseamp and x.
q1≔convertQ,phaseamp,x
∫113⁢13cos⁡x−arctan⁡23ⅆx
Evaluate the transformed integral. Note that it is a multiple of the integral of secx−arctan2/3; see Table 6.2.10.
q2≔valueq1
113⁢13⁢ln⁡sec⁡x−arctan⁡23+tan⁡x−arctan⁡23
Use a "brute force" substitution to apply the absolute value function to the argument of the logarithm.
evalq2,ln=ln@abs
Note that an annotated stepwise solution is available via the Context Panel with the "All Solution Steps" option.
The rules of integration can also be applied via the Context Panel, as per the figure to the right.
Maple's stepwise solution is surprising, as seen below.
Maple's annotated stepwise solution
Tools: Load Package≻Student Calculus 1
Loading Student:-Calculus1
Write the indefinite integral.
Context Panel: Student Calculus1≻All Solution Steps
∫12 sinx+3 cosx ⅆx→show solution stepsIntegration Steps∫12⁢sin⁡x+3⁢cos⁡xⅆx▫1. Apply a change of variables to rewrite the integral in terms of u◦Let u beu=tan⁡x2◦Isolate equation for xx=2⁢arctan⁡u◦Differentiate both sidesdx=2⁢duu2+1◦Substitute the values for x and dx back into the original∫12⁢sin⁡x+3⁢cos⁡xⅆx=∫−23⁢u2−4⁢u−3ⅆuThis gives:∫−23⁢u2−4⁢u−3ⅆu▫2. Apply the constant multiple rule to the term ∫−23⁢u2−4⁢u−3ⅆu◦Recall the definition of the constant multiple rule∫C⁢f⁡uⅆu=C⁢∫f⁡uⅆu◦This means:∫−23⁢u2−4⁢u−3ⅆu=−2⁢∫13⁢u2−4⁢u−3ⅆuWe can rewrite the integral as:−2⁢∫13⁢u2−4⁢u−3ⅆu▫3. Apply partial fraction decomposition◦Partial fractions expansion13⁢u2−4⁢u−3=−3⁢1326⁢−3⁢u+2+13−3⁢1326⁢3⁢u−2+13This gives:−2⁢∫−3⁢1326⁢−3⁢u+2+13−3⁢1326⁢3⁢u−2+13ⅆu▫4. Apply the sum rule◦Recall the definition of the sum rule∫f⁡u+g⁡uⅆu=∫f⁡uⅆu+∫g⁡uⅆuf⁡u=−3⁢1326⁢−3⁢u+2+13g⁡u=−3⁢1326⁢3⁢u−2+13This gives:−2⁢∫−3⁢1326⁢−3⁢u+2+13ⅆu−2⁢∫−3⁢1326⁢3⁢u−2+13ⅆu▫5. Apply the constant multiple rule to the term ∫−3⁢1326⁢−3⁢u+2+13ⅆu◦Recall the definition of the constant multiple rule∫C⁢f⁡uⅆu=C⁢∫f⁡uⅆu◦This means:∫−3⁢1326⁢−3⁢u+2+13ⅆu=−3⁢13⁢∫1−3⁢u+2+13ⅆu26We can rewrite the integral as:3⁢13⁢∫1−3⁢u+2+13ⅆu13−2⁢∫−3⁢1326⁢3⁢u−2+13ⅆu▫6. Apply a change of variables to rewrite the integral in terms of u1◦Let u1 beu1=−3⁢u+2+13◦Isolate equation for uu=23+133−u13◦Differentiate both sidesdu=−du13◦Substitute the values for u and du back into the original∫1−3⁢u+2+13ⅆu=∫−13⁢u1ⅆu1This gives:3⁢13⁢∫−13⁢u1ⅆu113−2⁢∫−3⁢1326⁢3⁢u−2+13ⅆu▫7. Apply the constant multiple rule to the term ∫−13⁢u1ⅆu1◦Recall the definition of the constant multiple rule∫C⁢f⁡u1ⅆu1=C⁢∫f⁡u1ⅆu1◦This means:∫−13⁢u1ⅆu1=−∫1u1ⅆu13We can rewrite the integral as:−13⁢∫1u1ⅆu113−2⁢∫−3⁢1326⁢3⁢u−2+13ⅆu▫8. Apply the reciprocal rule to the term ∫1u1ⅆu1◦Recall the definition of the reciprocal rule∫1u1ⅆu1=ln⁡u1We can rewrite the integral as:−13⁢ln⁡u113−2⁢∫−3⁢1326⁢3⁢u−2+13ⅆu▫9. Revert change of variable◦Variable we defined in step 6u1=−3⁢u+2+13This gives:−13⁢ln⁡−3⁢u+2+1313−2⁢∫−3⁢1326⁢3⁢u−2+13ⅆu▫10. Apply the constant multiple rule to the term ∫−3⁢1326⁢3⁢u−2+13ⅆu◦Recall the definition of the constant multiple rule∫C⁢f⁡uⅆu=C⁢∫f⁡uⅆu◦This means:∫−3⁢1326⁢3⁢u−2+13ⅆu=−3⁢13⁢∫13⁢u−2+13ⅆu26We can rewrite the integral as:−13⁢ln⁡−3⁢u+2+1313+3⁢13⁢∫13⁢u−2+13ⅆu13▫11. Apply a change of variables to rewrite the integral in terms of u1◦Let u1 beu1=3⁢u−2+13◦Isolate equation for uu=23−133+u13◦Differentiate both sidesdu=du13◦Substitute the values for u and du back into the original∫13⁢u−2+13ⅆu=∫13⁢u1ⅆu1This gives:−13⁢ln⁡−3⁢u+2+1313+3⁢13⁢∫13⁢u1ⅆu113▫12. Apply the constant multiple rule to the term ∫13⁢u1ⅆu1◦Recall the definition of the constant multiple rule∫C⁢f⁡u1ⅆu1=C⁢∫f⁡u1ⅆu1◦This means:∫13⁢u1ⅆu1=∫1u1ⅆu13We can rewrite the integral as:−13⁢ln⁡−3⁢u+2+1313+13⁢∫1u1ⅆu113▫13. Apply the reciprocal rule to the term ∫1u1ⅆu1◦Recall the definition of the reciprocal rule∫1u1ⅆu1=ln⁡u1We can rewrite the integral as:−13⁢ln⁡−3⁢u+2+1313+13⁢ln⁡u113▫14. Revert change of variable◦Variable we defined in step 11u1=3⁢u−2+13This gives:13⁢ln⁡3⁢u−2+1313−13⁢ln⁡−3⁢u+2+1313▫15. Revert change of variable◦Variable we defined in step 1u=tan⁡x2This gives:ln⁡3⁢tan⁡x2−2+13−ln⁡−3⁢tan⁡x2+2+13⁢1313
<< Previous Example Section 6.6 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document