Chapter 1: Vectors, Lines and Planes
Section 1.4: Cross Product
Example 1.4.2
For the vectors A=3 i−2 j+4 k, B=5 i+7 j−6 k, and C=4 i−3 j−5 k,
Verify the distributive property A×B+C=A×B+A×C.
Verify the distributive property A+B×C=A×C+B×C.
Show that A×B×C≠A×B×C.
Verify the identity A×B×C+B×C×A+C×A×B=0.
Verify the identity A×B×C=A·CB−A·BC.
Verify the identity A×B×C=A·CB−B·CA.
Solution
Mathematical Solution
Part (a)
Since B+C=9 i+4 j−11 k, A×B+C is given by
|ijk3−2494−11| = 22−16−(−33−36)12−(−18) = 66930
Since A×B = ijk3−2457−6 = −163831 and A×C = ijk3−244−3−5 = 2231−1, then
A×B+A×C = −163831+2231−1 = 66930.
Part (b)
Since A+B = 8 i+5 j−2 k, A+B×C is given by
|ijk85−24−3−5| = −25−6−(−40−(−8))−24−20 = −3132−44
Since B×C = |ijk57−64−3−5| = −531−43 and A×C = 2231−1, then
A×C+B×C = 2231−1+−531−43 = −3132−44.
Part (c)
A×B×C= |ijk3−24−531−43| = 86−4−(−129−(−212))3−106 = 82−83−103
A×B×C = |ijk−1638314−3−5| = −190−(−93)−(80−124)48−152 = −9744−104
Since 82−83−103≠−9744−104, it is clear that A×B×C≠A×B×C.
Part (d)
From Part (c), A×B×C=82−83−103 and A×B×C=−9744−104, so
C×A×B= −A×B×C= −−9744−104.
Again, from Part (a), A×C=2231−1, so C×A=−A×C=−2231−1. Hence
B×C×A= |ijk57−6−22−311| = 7−186−(5−132)−155+154 = −179127−1
and A×B×C+B×C×A+C×A×B becomes
82−83−103+−179127−1+97−44104=000=0
Part (e)
From Part (c), A×B×C= 82−83−103.
Since A·C=12+6−20= −2, and A·B=15−14−24= −23, it follows that
A·CB−A·BC = −257−6−−234−3−5=82−83−103
Part (f)
From Part (d), A×B×C=−9744−104.
Since A·C=12+6−20= −2, and B·C=20−21+30=29, it follows that
A·CB−B·CA = −257−6−293−24=−9744−104
Maple Solution - Interactive
Initialization
Enter A as per Table 1.1.1.
Context Panel: Assign to a Name≻A
3,−2,4→assign to a nameA
Enter B as per Table 1.1.1.
Context Panel: Assign to a Name≻B
5,7,−6→assign to a nameB
Enter C as per Table 1.1.1.
Context Panel: Assign to a Name≻C
4,−3,−5→assign to a nameC
Common Symbols palette: Cross-product operator
Context Panel: Evaluate and Display Inline
Left-hand Side
Right-hand Side
A×B+C =
A×B+A×C =
A+B×C =
A×C+B×C =
A×B×C =
A×B×C+B×C×A+C×A×B =
Common Symbols palette: Cross-product and dot-product operators
A·CB−A·BC =
A·CB−B·CA =
Maple Solution - Coded
Tools≻Load Package: Student Multivariate Calculus
withStudent:-MultivariateCalculus:
Define the vectors A, B, and C.
A,B,C≔3,−2,4,5,7,−6,4,−3,−5:
Apply the CrossProduct command.
CrossProductA,B+C
CrossProductA,B+CrossProductA,C
CrossProductA+B,C
CrossProductA,C+CrossProductB,C
CrossProductA,CrossProductB,C =
CrossProductCrossProductA,B,C =
CrossProductA,CrossProductB,C+CrossProductB,CrossProductC,A+CrossProductC,CrossProductA,B
Apply the DotProduct and CrossProduct commands.
DotProductA,C⋅B−DotProductA,B⋅C =
DotProductA,C⋅B−DotProductB,C⋅A =
<< Previous Example Section 1.4 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document