Chapter 4: Partial Differentiation
Section 4.3: Chain Rule
Example 4.3.11
If u=fx−y,y−x, show that ux+uy=0.
Solution
Mathematical Solution
It is most convenient to define r=x−y and s=y−x so that u=frx,y,sx,y.
ux+uy
=fr rx+fs sx+fr ry+fs sy
=fr 1+fs −1+fr −1+fs 1
=1−1 fr+−1+1 fs
=0⋅fr+0⋅fs
=0+0
=0
Maple Solution - Interactive
Maple's statement of the general chain rule for this case
∂∂ x frx,y,sx,y+∂∂ y frx,y,sr,y
D1⁡f⁡r⁡x,y,s⁡x,y⁢∂∂x⁢r⁡x,y+D2⁡f⁡r⁡x,y,s⁡x,y⁢∂∂x⁢s⁡x,y+D1⁡f⁡r⁡x,y,s⁡r,y⁢∂∂y⁢r⁡x,y+D2⁡f⁡r⁡x,y,s⁡r,y⁢∂∂y⁢s⁡r,y
Specify the arguments of f
∂∂ x fx−y,y−x+∂∂ y fx−y,y−x = 0
It is convenient to define r=x−y and s=y−x so that u=frx,y,sx,y.
Define rx,y and sx,y
Context Panel: Assign Name
r=x−y→assign
s=y−x→assign
Apply the chain rule to obtain ux+uy
Calculus palette: Partial-differential operator
Context Panel: Evaluate and Display Inline
∂∂ x fr,s+∂∂ y fr,s = 0
Maple Solution - Coded
Implement the chain rule
Apply the diff command.
difffr,s,x +difffr,s,y = 0
<< Previous Example Section 4.3 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document