Chapter 5: Double Integration
Section 5.6: Changing Variables in a Double Integral
Example 5.6.4
Let R be the region bounded by the curves C1:x2−y2=1, C2:x2−y2=4, C3:2 x y=1, C4:2 x y=5.
Express the Cartesian integral ∫∫Rfx,y dA in terms of the coordinates u=x2−y2,v=2 x y.
Solution
Mathematical Solution
Figure 5.6.4(a) shows the region R; Figure 5.6.4(b) shows R′, the image of R under the given change of variables.
Figure 5.6.4(a) Region R
Figure 5.6.4(b) Region R′
Table 5.6.4(a) lists the equations for the mappings between regions R and R′.
Mapping R′→R
Mapping R→R′
x=v−2⁢u+2⁢u2+v2
u=x2−y2
y=12⁢−2⁢u+2⁢u2+v2
v=2 x y
Table 5.6.4(a) Mappings R↔R′
Direct calculation of the Jacobian ∂x,y∂u,v is tedious. Alternatively, the matrix for the Jacobian ∂u,v∂x,y is 2 x−2 y2 y2 x so this Jacobian is 4x2+y2. The requisite Jacobian is the reciprocal of this expressed in terms of u and v, that is, ∂x,y∂u,v=14u2+v2.
The requisite integral is then
∫∫Rfx,y dA
= ∫14∫15fxu,v,yu,v4v2−u2 ⅆvⅆu
Maple Solution - Interactive
Initialize
Tools≻Load Package: Student Multivariate Calculus
Loading Student:-MultivariateCalculus
Context Panel: Assign Name
L=x2−y2=1, x2−y2=4,2 x y=1,2 x y=5→assign
U=x2−y2→assign
Context Panel: Assign name
V=2 x y→assign
Change coordinates and implement the integration in the new coordinate system.
Obtain the equations S=x=xu,v,y=yu,v for the mapping u,v→x,y
Write the equations for the mapping v⁡x,t⁢will now be displayed as⁢v. Press the Enter key.
Context Panel: Solve≻Solve for Variables≻x,y
Context Panel: All Values
Context Panel: Assign to a Name≻S
u=U,v=V
u=x2−y2,v=2⁢x⁢y
→solve (specified)
x=v2⁢RootOf⁡4⁢_Z4+4⁢_Z2⁢u−v2,y=RootOf⁡4⁢_Z4+4⁢_Z2⁢u−v2
→all values
x=v−2⁢u+2⁢u2+v2,y=−2⁢u+2⁢u2+v22,x=−v−2⁢u+2⁢u2+v2,y=−−2⁢u+2⁢u2+v22,x=v−2⁢u−2⁢u2+v2,y=−2⁢u−2⁢u2+v22,x=−v−2⁢u−2⁢u2+v2,y=−−2⁢u−2⁢u2+v22
→assign to a name
S
Obtain the Jacobian
Expression palette: Evaluation template Evaluate x and then y using the information in set S
Context Panel: Evaluate and Display Inline
Context Panel: Assign to a Name≻X or Y, as appropriate
Form the list U,V and press the Enter key.
Context Panel: Student Multivariate Calculus≻Differentiate≻Jacobian
Context Panel: Evaluate at a Point≻x=X and y=Y
Context Panel: Rationalize
Context Panel: Expand≻Expand
xx=a|f(x)S1 = v−2⁢u+2⁢u2+v2→assign to a nameX
yx=a|f(x)S1 = −2⁢u+2⁢u2+v22→assign to a nameY
U,V
x2−y2,2⁢x⁢y
→Jacobian
4⁢x2+4⁢y2
→evaluate at point
4⁢v2−2⁢u+2⁢u2+v2−2⁢u+2⁢u2+v2
= rationalize
−4⁢u⁢u2+v2−u2−v2⁢u2+v2+uv2
= expand
4⁢u2+v2
U,V = x2−y2,2⁢x⁢y→Jacobian4⁢x2+4⁢y2→evaluate at point4⁢v2−2⁢u+2⁢u2+v2−2⁢u+2⁢u2+v2= rationalize −4⁢u⁢u2+v2−u2−v2⁢u+u2+v2v2= expand 4⁢u2+v2
Obtain the Jacobian matrix and the Jacobian from first principles
Matrix palette: Insert template for 2×2 matrix.
Calculus palette: Partial derivative operator
Context Panel: Standard Operations≻Determinant
∂∂ x U∂∂ y U∂∂ x V∂∂ y V = →determinant4⁢x2+4⁢y2→evaluate at point4⁢v2−2⁢u+2⁢u2+v2−2⁢u+2⁢u2+v2= rationalize −4⁢u⁢u2+v2−u2−v2⁢u2+v2+uv2= expand 4⁢u2+v2
Obtain the images of the edges of the region R
Expression palette: Evaluation template Evaluate the equation of each edge of R using the equations in set S. Press the Enter key.
Context Panel: Move to Left
Context Panel: Left-hand Side
Context Panel: Conversions: Equate to 0
L1x=a|f(x)S1
v2−2⁢u+2⁢u2+v2+12⁢u−12⁢u2+v2=1
→move to left
v2−2⁢u+2⁢u2+v2+12⁢u−12⁢u2+v2−1=0
→left hand side
v2−2⁢u+2⁢u2+v2+12⁢u−12⁢u2+v2−1
u−1
→equate to 0
u−1=0
L2x=a|f(x)S1
v2−2⁢u+2⁢u2+v2+12⁢u−12⁢u2+v2=4
v2−2⁢u+2⁢u2+v2+12⁢u−12⁢u2+v2−4=0
v2−2⁢u+2⁢u2+v2+12⁢u−12⁢u2+v2−4
u−4
u−4=0
L3x=a|f(x)S1
v=1
L4x=a|f(x)S1
v=5
Implement the integration over the region R′
Calculus palette: Iterated double-integral template
∫14∫15fxu,v,yu,v4u2+v2 ⅆv ⅆu
Maple Solution - Coded
Install the Student MultivariateCalculus package.
withStudent:-MultivariateCalculus:
Define the edges of the region defining R.
L≔x2−y2=1, x2−y2=4,2 x y=1,2 x y=5:
Define the mapping v⁡x,t⁢will now be displayed as⁢v.
U≔x2−y2:V≔2 x y:
Apply the solve command. (The first solution maps the first quadrant to the first quadrant, so it is the one to select.)
S≔solveu=U,v=V,x,y,explicit
x=v−2⁢u+2⁢u2+v2,y=12⁢−2⁢u+2⁢u2+v2,x=−v−2⁢u+2⁢u2+v2,y=−12⁢−2⁢u+2⁢u2+v2,x=v−2⁢u−2⁢u2+v2,y=12⁢−2⁢u−2⁢u2+v2,x=−v−2⁢u−2⁢u2+v2,y=−12⁢−2⁢u−2⁢u2+v2
Obtain the Jacobian matrix and the Jacobian
Use the eval command to obtain xu,v and yu,v.
Apply the Jacobian command in its two forms, one to get the matrix, and one to get the determinant.
X≔evalx,S1
v−2⁢u+2⁢u2+v2
Y≔evaly,S1
12⁢−2⁢u+2⁢u2+v2
Apply the Jacobian command in its two forms, one to get the matrix, and one to get the determinant. Obtain ∂u,v∂x,y, the reciprocal of ∂x,y∂u,v.
Apply the rationalize and expand commands to ∂u,v∂x,y to obtain an expression in u and v.
JacobianU,V,x,y;Jxy≔JacobianU,V,x,y,output=determinant;expandrationalizeevalJxy,x=X,y=Y
Obtain the images of the boundaries of the region R
Use the eval command to make the replacements x→xu,v and y→yu,v in the equation of each edge of the region R.
Use the lhs and rhs commands to move all terms to the left of the resulting equation.
Use the rationalize command to simplify the results.
λ≔evalL1,S1:rationalizelhsλ−rhsλ=0
λ≔evalL2,S1:rationalizelhsλ−rhsλ=0
λ≔evalL3,S1:rationalizelhsλ−rhsλ=0
v−1=0
λ≔evalL4,S1:rationalizelhsλ−rhsλ=0
v−5=0
Use the Int command to generate the inert integral. Press the Enter key.
Intfxu,v,yu,v4u2+v2 ,v=1..5,u=1..4
∫14∫1514⁢f⁡x⁡u,v,y⁡u,vu2+v2ⅆvⅆu
<< Previous Example Section 5.6 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document