Chapter 6: Applications of Double Integration
Section 6.1: Area
Example 6.1.4
Use the double integral to calculate the area of the region R, the region bounded by the graphs of fx=arctanx+1−1/2 and gx=sinx on the interval x∈0,π/2.
Solution
Mathematical Solution
The region R is shaded in the graph shown in Figure 6.1.4(a). The simplest iteration of the double integral that gives the area of R takes the integrand as 1 and uses the order dy dx. The intersection of f and g, namely, X≐0.506, must be obtained numerically.
∫0X∫sinxfx1 ⅆy ⅆx+∫Xπ/2∫fxsinx1 ⅆy ⅆx ≐ 0.302
It takes two iterated double integrals to obtain the requisite area because the curves "cross" at x=X. The first iterated double integral computes the area shaded green in Figure 6.1.4(a); the second, the red.
plots:-shadebetween(arctan(x+1)-1/2,sin(x),x=0..(1/2)*Pi,color=blue,thickness=3, changefill=[color=[green,red]],scaling=constrained,labels = [x,y],tickmarks=[piticks,2]);
Figure 6.1.4(a) The region R
Maple Solution - Interactive
Initialize
Context Panel: Assign name
f=arctanx+1−1/2→assign
g=sinx→assign
Obtain the intersections of the curves bounding R
Equate fx and gx, then press the Enter key.
Context Panel: Solve≻Numerically Solve
Context Panel: Assign to a Name≻X
f=g
arctan⁡x+1−12=sin⁡x
→solve
0.5059163080
→assign to a name
X
Iterate in the order dy dx via the template in the Calculus palette
Calculus palette: Iterated double-integral template
Context Panel: Evaluate and Display Inline
∫0X∫gf1 ⅆy ⅆx+∫Xπ/2∫fg1 ⅆy ⅆx = 0.3016523782
Maple Solution - Coded
Install the Student MultivariateCalculus package.
withStudent:-MultivariateCalculus:
Define the two bounding curves.
f≔arctanx+1−1/2:g≔sinx:
Solve the equation fx=gx for x
Obtain a numeric solution with the fsolve command.
X≔fsolvef=g,x
Top-level, using the Int and int commands
Int1,y=g..f,x=0..X+Int1,y=f..g,x=X..π/2=int1,y=g..f,x=0..X+int1,y=f..g,x=X..π/2
∫00.5059163080∫sin⁡xarctan⁡x+1−121ⅆyⅆx+∫0.505916308012⁢π∫arctan⁡x+1−12sin⁡x1ⅆyⅆx=0.3016523782
Use the MultiInt command from the Student MultivariateCalculus package
MultiInt1,y=g..f,x=0..X+MultiInt1,y=f..g,x=X..π/2 = 0.3016523782
MultiInt1,y=g..f,x=0..X,output=integral+MultiInt1,y=f..g,x=X..π/2,output=integral
∫00.5059163080∫sin⁡xarctan⁡x+1−121ⅆyⅆx+∫0.505916308012⁢π∫arctan⁡x+1−12sin⁡x1ⅆyⅆx
Use the MultiInt command with a pre-defined domain option
MultiInt1,x,y=Region0..X,g..f+ MultiInt1,x,y=RegionX..π/2,f..g
0.3016523782
MultiInt1,x,y=Region0..X,g..f,output=integral+ MultiInt1,x,y=RegionX..π/2,f..g,output=integral
<< Previous Example Section 6.1 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document