Chapter 6: Applications of Double Integration
Section 6.4: Average Value
Example 6.4.3
Find the average value of F=2 x+3 y+1 over R, the region bounded by the graphs of fx=sinx and gx=sin2 x on 0≤x≤π. See Example 6.2.3 and Example 6.1.3.
Solution
Mathematical Solution
The average value of F=2 x+3 y+1 over the region shown in Figure 6.1.3(a) is
∫0π/3∫sinxsin2 xF ⅆy ⅆx+∫π/3π∫sin2 xsinxF ⅆy ⅆx∫0π/3∫sinxsin2 x1 ⅆy ⅆx+∫π/3π∫sin2 xsinx1 ⅆy ⅆx
=52+4⁢π−1516⁢352
=1+85⁢π−38⁢3
≐5.377029193
The numerator is the volume computed in Example 6.2.3, while the denominator is the area computed in Example 6.1.3.
Maple Solution - Interactive
A solution from first principles entails simply formulating and evaluating the integrals for volume and area as found in Example 6.2.3 and Example 6.1.3, respectively.
Solution from first principles
Context Panel: Assign Name
F=2 x+3 y+1→assign
Calculus palette: Iterated double-integral template
Context Panel: Evaluate and Display Inline
Context Panel: Approximate≻10 (digits)
∫0π/3∫sinxsin2 xF ⅆy ⅆx+∫π/3π∫sin2 xsinxF ⅆy ⅆx∫0π/3∫sinxsin2 x1 ⅆy ⅆx+∫π/3π∫sin2 xsinx1 ⅆy ⅆx = 1+85⁢π−38⁢3→at 10 digits5.377029193
Maple Solution - Coded
Define F.
F≔2 x+3 y+1:
Use the Int, value, and evalf commands.
Q≔IntF,y=sinx..sin2 x,x=0..π/3+IntF,y=sin2 x..sinx,x=π/3..πInt1,y=sinx..sin2 x,x=0..π/3+Int1,y=sin2 x..sinx,x=π/3..π
∫013⁢π∫sin⁡xsin⁡2⁢x2⁢x+3⁢y+1ⅆyⅆx+∫13⁢ππ∫sin⁡2⁢xsin⁡x2⁢x+3⁢y+1ⅆyⅆx∫013⁢π∫sin⁡xsin⁡2⁢x1ⅆyⅆx+∫13⁢ππ∫sin⁡2⁢xsin⁡x1ⅆyⅆx
q≔valueQ
1+85⁢π−38⁢3
evalfq
5.377029193
<< Previous Example Section 6.4 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document