Chapter 6: Applications of Double Integration
Section 6.4: Average Value
Example 6.4.9
Find the average value of Fr,θ=r2 2 cos2θ+3 sin2θ over R, the region that is inside the circle r=3 cosθ but outside the cardioid r=1+cosθ. See Example 5.7.4.
Solution
Mathematical Solution
Figure 6.4.9(a) shows the function Fr,θ drawn over the region R. The integral in the numerator for the average value is over the shaded region. The average value itself is then
∫−π/3π/3∫1+cosθ3 cos θF⋅r ⅆr ⅆθ∫−π/3π/3∫1+cosθ3 cos θr ⅆr ⅆθ
=1521320⁢3+22324⁢ππ
≐11.91220182
Figure 6.4.9(a) Graph of Fr,θ
Maple Solution - Interactive
The simplest approach to finding the average value in polar coordinates is to use the task template shown in Table 6.4.9(a).
Tools≻Tasks≻Browse:
Calculus - Multivariate≻Integration≻Average Value≻Polar
Average Value of a Function in Polar Coordinates
Integrand
r2 2 cos2θ+3 sin2θ
r2⁢2⁢cos⁡θ2+3⁢sin⁡θ2
Region: r1θ≤r≤r2θ,a≤θ≤b
r1θ
1+cosθ
1+cos⁡θ
r2θ
3 cosθ
3⁢cos⁡θ
a
−π/3
−13⁢π
b
π/3
13⁢π
Inert Integral: dr dθ
(Note automatic insertion of Jacobian.)
StudentMultivariateCalculusFunctionAverage,r=..,θ=..,coordinates=polarr,θ,output=integral
∫−13⁢π13⁢π∫1+cos⁡θ3⁢cos⁡θr3⁢2⁢cos⁡θ2+3⁢sin⁡θ2ⅆrⅆθ∫−13⁢π13⁢π∫1+cos⁡θ3⁢cos⁡θrⅆrⅆθ
Value
StudentMultivariateCalculusFunctionAverage,r=..,θ=..,coordinates=polarr,θ
1521320⁢3+22324⁢ππ
Table 6.4.9(a) In polar coordinates, computation of average value by task template
A solution from first principles is implemented in Table 6.4.9(b).
Initialize
Context Panel: Assign name
F=r2 2 cos2θ+3 sin2θ→assign
Calculate the average value of F
Calculus palette: Iterated double-integral template
Context Panel: Evaluate and Display Inline
Context Panel: Expand≻Expand
Context Panel: Approximate≻10 (digits)
∫−π/3π/3∫1+cosθ3 cos θF⋅r ⅆr ⅆθ∫−π/3π/3∫1+cosθ3 cos θr ⅆr ⅆθ = 1521320⁢3+22324⁢ππ= expand 1521320⁢3π+22324→at 10 digits11.91220182
Table 6.4.9(b) From first principles and in polar coordinates, calculation of average value
Maple Solution - Coded
Define F.
F≔r2 2 cos2θ+3 sin2θ:
Compute the average value of F
Apply the FunctionAverage command from the Student MultivariateCalculus package.
Use the expand and evalf commands to modify the form of the average value.
Student:-MultivariateCalculus:-FunctionAverageF,r=1+cosθ..3 cosθ,θ=−π/3..π/3,coordinates=polarr,θ,output=integral
q≔Student:-MultivariateCalculus:-FunctionAverageF,r=1+cosθ..3 cosθ,θ=−π/3..π/3,coordinates=polarr,θ
expandq = 1521320⁢3π+22324
evalfq = 11.91220182
<< Previous Example Section 6.4 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document