Chapter 6: Applications of Double Integration
Section 6.5: First Moments
Example 6.5.4
Calculate the coordinates of the center of mass for the triangular lamina whose vertices are 0 ,0,0,3,4,0, and whose density is ρ=1+2 x+5 y.
Solution
Mathematical Solution
Figure 6.5.4(a) shows the lamina in red, the center of mass (green dot), and the density ρ as a surface in blue. The relevant calculations are
m=∫04∫031−x/4ρ ⅆy ⅆx = 25
Mx=∫04∫031−x/4y⋅ρ ⅆy ⅆx = 45/2
My=∫04∫031−x/4x⋅ρ ⅆy ⅆx = 43
x&conjugate0;=My/m=43/25
y&conjugate0;=Mx/m=45/225=910
Figure 6.5.4(a) CM, lamina, and ρ
Maple Solution - Interactive
Obtain the equation of the hypotenuse
Tools≻Load Package: Student Precalculus
Loading Student:-Precalculus
Context Panel: Student Precalculus≻ Lines And Segments≻Line≻Equation
0,3,4,0→equation of liney=−34⁢x+3
Table 6.5.4(a) contains a solution via the task template that implements the CenterOfMass command from the Student MultivariateCalculus package. The given density is ρ=1+2 x+ y/2.
Tools≻Tasks≻Browse: Calculus - Multivariate≻Integration≻Center of Mass≻Cartesian 2-D
Center of Mass for Planar Region in Cartesian Coordinates
Density:
1+2 x+ y/2
1+2⁢x+12⁢y
Region: ux≤y≤vx,a≤x≤b
ux
0
vx
31−x/4
−34⁢x+3
a
b
4
Moments÷Mass:
Inert Integral - dy dx
StudentMultivariateCalculusCenterOfMass, x=..,y=..,output=integral
∫04∫0−34⁢x+3x⁢1+2⁢x+12⁢yⅆyⅆx∫04∫0−34⁢x+31+2⁢x+12⁢yⅆyⅆx,∫04∫0−34⁢x+3y⁢1+2⁢x+12⁢yⅆyⅆx∫04∫0−34⁢x+31+2⁢x+12⁢yⅆyⅆx
Explicit values for x&conjugate0; and y&conjugate0;
StudentMultivariateCalculusCenterOfMass,x=..,y=..
4325,910
Plot:
StudentMultivariateCalculusCenterOfMass,x=..,y=..,output=plot,caption=
Table 6.5.4(a) Solution by Task Template
A solution from first principles is detailed in Table 6.5.4(b).
Define the density function ρx,y
Context Panel: Assign Name
ρ=1+2 x+ y/2→assign
Obtain m, the total mass of the lamina
Calculus palette: Iterated double-integral template
Context Panel: Evaluate and Display Inline
Context Panel: Assign to a Name≻m
∫04∫031−x/4ρ ⅆy ⅆx = 25→assign to a namem
Obtain Mx, the total moments about the x-axis
Context Panel: Assign to a Name≻Mx
∫04∫031−x/4ρ⋅y ⅆy ⅆx = 452→assign to a nameMx
Obtain My, the total moments about the y-axis
Context Panel: Assign to a Name≻My
∫04∫031−x/4ρ⋅x ⅆy ⅆx = 43→assign to a nameMy
Obtain x&conjugate0;=My/m
My/m = 4325
Obtain y&conjugate0;=Mx/m
Mx/m = 910
Table 6.5.4(b) Calculation of the center of mass from first principles
Maple Solution - Coded
Initialize
Define the density function ρx,y.
ρ≔1+2 x+ y/2:
Obtain the equation of the hypotenuse of the right triangle
Student:-Precalculus:-Line0,3,4,01
y=−34⁢x+3
Obtain the total mass of the lamina
Display the unevaluated integral with the Int command, and evaluate the integral with the value command.
q≔Intρ,y=0..31−x/4,x=0..4
∫04∫0−34⁢x+31+2⁢x+12⁢yⅆyⅆx
m≔valueq
25
Obtain the first moments Mx and My
q≔Intρ⋅y,y=0..31−x/4,x=0..4
∫04∫0−34⁢x+3y⁢1+2⁢x+12⁢yⅆyⅆx
Mx≔valueq
452
q≔Intρ⋅x,y=0..31−x/4,x=0..4
∫04∫0−34⁢x+3x⁢1+2⁢x+12⁢yⅆyⅆx
My≔valueq
43
Obtain the coordinates of the center of mass x&conjugate0;,y&conjugate0;
Implement the relevant arithmetic.
Mym,Mxm = 4325,910
<< Previous Example Section 6.5 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document