Chapter 7: Triple Integration
Section 7.5: Integration in Spherical Coordinates
Example 7.6.2
Use spherical coordinates to integrate the function f=1 over R, the region above the cone z=x2+y2 but below the unit sphere that is centered at 0,0,1.
(This region was graphed in Example 7.5.4.)
(See Example 7.4.11 where this integral is evaluated in cylindrical coordinates.)
Solution
Mathematical Solution
The graph in Figure 7.6.2(a) was obtained in Example 7.5.4.
Iteration in the order dρ dφ dθ leads to
∫02 π∫0π/4∫02 cosφρ2sinφ ⅆρ ⅆφ ⅆθ = π
The astute reader will note that the value of the integral, namely π, is the volume of the region R. This region consists of a hemisphere of radius 1 (having volume 2 π/3) and a cone (having volume π/3).
use plots in module() local p1,p2,p3; p1:=plot3d(2*cos(phi), theta=0..2*Pi,phi=0.. (1/4)*Pi,coords=spherical); p2:=plot3d([rho, theta,Pi/4],rho=0.. sqrt(2),theta=0..2*Pi, coords = spherical); p3:=display(p1,p2, scaling=constrained, axes=frame,labels=[x,y,z],tickmarks=[3,3,3],orientation=[-30,80,0],lightmodel=none); print(p3); end module: end use:
Figure 7.6.2(a) The region R
The upper limit of the innermost integral is obtained by using z=x2+y2 to rewrite x2+y2+z−12=1 as ρ2−2 z=ρρ−2 cosφ=0 and solving for ρ=2 cosφ.
The upper limit of the middle integral is obtained by noting that for the cone z=x2+y2, φ=π/4.
Maple Solution - Interactive
Table 7.6.2(a) provides a solution by a visualization task template.
Tools≻Tasks≻Browse:
Calculus - Multivariate≻Integration≻Visualizing Regions of Integration≻Spherical
Evaluate ∭RΨρ,φ,θ dv and Graph R
Volume Element dv=ρ2sinφ×
dρ dφ dθ
dρ dθ dφ
dφ dρ dθ
dφ dθ dρ
dθ dφ dρ
dθ dρ dφ
, where Ψ=
F=
G=
b=
f=
g=
a=
Table 7.6.2(a) Solution by visualization task template
Table 7.6.2(b) provides a solution by a task template that embodies the MultiInt command from the Student MultivariateCalculus package. It iterates in just the order dρ dφ dθ, although the command itself will iterate in any of the six possible orders.
Tools≻Tasks≻Browse: Calculus - Multivariate≻Integration≻Multiple Integration≻Spherical
Iterated Triple Integral in Spherical Coordinates
(φ = colatitude, measured down from z-axis)
Integrand:
1
Region: ρ1φ,θ≤ρ≤ρ2φ,θ,φ1θ≤φ≤φ2θ,a≤θ≤b
ρ1φ,θ
0
ρ2φ,θ
2 cosφ
2⁢cos⁡φ
φ1θ
φ2θ
π/4
14⁢π
a
b
2 π
2⁢π
Inert Integral: dρ dφ dθ
StudentMultivariateCalculusMultiInt,ρ=..,φ=..,θ=..,coordinates=sphericalρ,φ,θ,output=integral
∫02⁢π∫014⁢π∫02⁢cos⁡φρ2⁢sin⁡φⅆρⅆφⅆθ
Value:
StudentMultivariateCalculusMultiInt,ρ=..,φ=..,θ=.., coordinates=sphericalρ,φ,θ
π
Stepwise Evaluation:
StudentMultivariateCalculusMultiInt,ρ=.., φ=..,θ=..,coordinates=sphericalρ,φ,θ,output=steps
∫02⁢π∫0π4∫02⁢cos⁡φρ2⁢sin⁡φⅆρⅆφⅆθ=∫02⁢π∫0π4ρ3⁢sin⁡φ3ρ=0..2⁢cos⁡φ|ρ3⁢sin⁡φ3ρ=0..2⁢cos⁡φⅆφⅆθ=∫02⁢π∫0π48⁢sin⁡φ⁢cos⁡φ33ⅆφⅆθ=∫02⁢π−2⁢cos⁡φ43φ=0..π4|−2⁢cos⁡φ43φ=0..π4ⅆθ=∫02⁢π12ⅆθ=θ2θ=0..2⁢π|θ2θ=0..2⁢π
Table 7.6.2(b) Solution by task template that embodies the MultiInt command
Initialize
Tools≻Load Package: Student Multivariate Calculus
Loading Student:-MultivariateCalculus
Access the MultiInt command via the Context Panel
Type the integrand, 1.
Context Panel: Student Multivariate Calculus≻Integrate≻Iterated Fill in the fields of the two dialogs shown below.
Context Panel: Evaluate Integral
1→MultiInt∫02⁢π∫014⁢π∫02⁢cos⁡φρ2⁢sin⁡φⅆρⅆφⅆθ=π
Table 7.6.2(c) contains a solution from first principles, with the iterated integral being set via the iterated triple-integral template in the Calculus palette.
Calculus palette: Iterated triple-integral template (In the integrand, be sure to include the Jacobian for spherical coordinates.)
Context Panel: Evaluate and Display Inline
∫02 π∫0π/4∫02 cosφρ2sinφ ⅆρ ⅆφ ⅆθ = π
Table 7.6.2(c) Solution from first principles
Maple Solution - Coded
Install the Student MultivariateCalculus package.
withStudent:-MultivariateCalculus:
Apply the MultiInt command from the Student MultivariateCalculus package
MultiInt1,ρ=0..2 cosφ,φ=0..π/4,θ=0..2 π,coordinates=sphericalρ,φ,θ,output=integral
MultiInt1,ρ=0..2 cosφ,φ=0..π/4,θ=0..2 π,coordinates=sphericalρ,φ,θ
MultiInt1,ρ=0..2 cosφ,φ=0..π/4,θ=0..2 π,coordinates=sphericalρ,φ,θ,output=steps
Solution via the top-level Int and int commands
Intρ2sinφ,ρ=0..2 cosφ,φ=0..π/4,θ=0..2 π=intρ2sinφ,ρ=0..2 cosφ,φ=0..π/4,θ=0..2 π
∫02⁢π∫014⁢π∫02⁢cos⁡φρ2⁢sin⁡φⅆρⅆφⅆθ=π
<< Previous Example Section 7.6 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document