Chapter 7: Triple Integration
Section 7.5: Integration in Spherical Coordinates
Example 7.6.9
If x=ρ cosθsinφ,y=ρ sinθsinφ,z=ρ cosφ, show that ∂x,y,z∂ρ,φ,θ=ρ2sinφ.
Solution
Mathematical Solution
If spherical coordinates are defined by the equations
x=ρ cosθsinφ,y=ρ sinθsinφ,z=ρ cosφ
then the Jacobian is given by
∂x,y,z∂ρ,φ,θ = |xρxφxθyρyφyθzρzφzθ| = cos⁡θ⁢sin⁡φρ⁢cos⁡θ⁢cos⁡φ−ρ⁢sin⁡θ⁢sin⁡φsin⁡θ⁢sin⁡φρ⁢sin⁡θ⁢cos⁡φρ⁢cos⁡θ⁢sin⁡φcos⁡φ−ρ⁢sin⁡φ0 = ρ2sinφ
Maple Solution - Interactive
Initialize
Tools≻Load Package: Student Multivariate Calculus
Loading Student:-MultivariateCalculus
Context Panel: Assign Name
X=ρ cosθsinφ→assign
Y=ρ sinθsinφ→assign
Z=ρ cosφ→assign
Solution via Context Panel
Write the list X,Y,Z and press the Enter key.
Context Panel: Student Multivariate Calculus≻Differentiate≻Jacobian (See the figure to the right.)
Context Panel: Simplify≻Simplify
X,Y,Z
ρ⁢cos⁡θ⁢sin⁡φ,ρ⁢sin⁡θ⁢sin⁡φ,ρ⁢cos⁡φ
→Jacobian
cos⁡φ2⁢sin⁡θ2⁢sin⁡φ⁢ρ2+cos⁡φ2⁢cos⁡θ2⁢sin⁡φ⁢ρ2+sin⁡θ2⁢sin⁡φ3⁢ρ2+cos⁡θ2⁢sin⁡φ3⁢ρ2
= simplify
sin⁡φ⁢ρ2
Solution from first principles
Matrix palette: template for a 3×3 matrix
Calculus palette: Partial-differentiation operator
Context Panel: Evaluate and Display Inline
Context Panel: Standard Operations≻Determinant
∂∂ ρ X∂∂ φ X∂∂ θ X∂∂ ρ Y∂∂ φ Y∂∂ θ Y∂∂ ρ Z∂∂ φ Z∂∂ θ Z = →determinantcos⁡φ2⁢sin⁡θ2⁢sin⁡φ⁢ρ2+cos⁡φ2⁢cos⁡θ2⁢sin⁡φ⁢ρ2+sin⁡θ2⁢sin⁡φ3⁢ρ2+cos⁡θ2⁢sin⁡φ3⁢ρ2= simplify sin⁡φ⁢ρ2
Maple Solution - Coded
Install the Student MultivariateCalculus package.
withStudent:-MultivariateCalculus:
Apply the simplify command to the result of the Jacobian command with the determinant option.
simplifyJacobianρ cosθsinφ,ρ sinθsinφ,ρ cosφ,ρ,φ,θ,output=determinant
<< Previous Example Section 7.6 Next Chapter >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document