Chapter 7: Triple Integration
Section 7.2: Iterated Triple Integrals
Essentials
In Cartesian coordinates, the triple integral of gx,y,z over the parallelepiped
R={(x,y,z}| x∈a,b,y∈c,d,z∈e,f}
can be iterated in the six possible ways listed in Table 7.2.1.
∫x=ax=b∫y=cy=d∫z=ez=fgx,y,z dz dy dx
∫y=cy=d∫x=ax=b∫z=ez=fgx,y,z dz dx dy
∫z=ez=f∫x=ax=b∫y=cy=dgx,y,z dy dx dz
∫x=ax=b∫z=ez=f∫y=cy=dgx,y,z dy dz dx
∫z=ez=f∫y=cy=d∫x=ax=bgx,y,z dx dy dz
∫y=cy=d∫z=ez=f∫x=ax=bgx,y,z dx dz dy
Table 7.2.1 In Cartesian coordinates, the six iterations of a triple integral
Relevant Maple Tools
Table 7.2.2 lists the basic Maple tools for iterating a triple integral in Cartesian coordinates over a three-dimensional "box."
∫x1x2∫y1y2∫z1z2fⅆzⅆyⅆx, the iterated triple-integral template in the Calculus palette
The MultiInt command in the Student MultivariateCalculus package
The task template at
Tools≻Tasks≻Browse: Calculus - Vector≻Integration≻Multiple Integration≻3-D≻Over a Cube
The task template at Tools≻Tasks≻Browse:
Calculus - Multivariate≻Integration≻Visualizing Regions of Integration≻Cartesian 3-D
The Parallelepiped option in the modified int command of the Student VectorCalculus package
The Int and int commands at top-level
Table 7.2.2 Maple tools for iterating a triple integral over a "box"
Examples
Iterate each of the triple integrals given as examples in Section 7.1. In Cartesian coordinates there are six orders in which to iterate a triple integral. These orders will be designated by writing dv as one of dz dy dx, dz dx dy, dy dx dz, dy dz dx, dx dy dz, or dx dz dy.
Example 7.2.1
fx,y,z=x y z; R is defined by the inequalities 0≤x,y,z≤1.
See Example 7.1.1.
Example 7.2.2
fx,y,z=1+2 x+3 y+5 z; R is defined by the inequalities 1≤x,y,z≤2.
See Example 7.1.2.
Example 7.2.3
fx,y,z=1+2 x2+3 y2+4 z2; R={x,y,z| x∈1,2,y∈−1,3,z∈2,4}.
See Example 7.1.3.
<< Previous Section Table of Contents Next Section >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document