Chapter 8: Applications of Triple Integration
Section 8.1: Volume
Example 8.1.13
Use an iterated triple integral to obtain the volume of R, the region in the upper half-plane that is above the cone z2=x2+y2 but below the sphere x2+y2+z2=18. (Use spherical coordinates.)
Solution
Mathematical Solution
Figure 8.1.13(a) shows the solid whose volume is obtained by iterating a triple integral in spherical coordinates in the order dρ dφ dθ.
∫02 π∫0π/4∫032ρ2sinφ dρ dφ dθ = 36 π2−1
The cone and the sphere intersect in a circle of radius 3 lying in the plane z=3. The radius of the sphere is ρ=18=32, so, from Figure 8.1.13(b), generators of the cone make an angle φ=π/4 with the vertical.
Figure 8.1.13(a) Cone and sphere
The right triangle in Figure 8.1.13(b) lies in a vertical plane drawn through the z-axis. The length of the cone wall is ρ=32 and the radius of the cone's opening in the plane z=3 is 3.
Figure 8.1.13(b) The angle φ
Maple Solution - Interactive
Table 8.1.13(a) provides a solution by a task template that integrates in cylindrical coordinates and draws the region of integration.
Tools≻Tasks≻Browse: Calculus - Multivariate≻Integration≻Visualizing Regions of Integration≻Spherical
Evaluate ∭RΨρ,φ,θ dv and Graph R
Volume Element dv=ρ2sinφ×
dρ dφ dθ
dρ dθ dφ
dφ dρ dθ
dφ dθ dρ
dθ dφ dρ
dθ dρ dφ
, where Ψ=
F=
G=
b=
f=
g=
a=
Table 8.1.13(a) Task template integrating in spherical coordinates
Since the iteration order can be taken as dρ dφ dθ, the task template in Table 8.1.13(a), using the MultiInt command from the Student MultivariateCalculus package, applies.
Tools≻Tasks≻Browse: Calculus - Multivariate≻Integration≻Multiple Integration≻Spherical
Iterated Triple Integral in Spherical Coordinates
(φ = colatitude, measured down from z-axis)
Integrand:
1
Region: ρ1φ,θ≤ρ≤ρ2φ,θ,φ1θ≤φ≤φ2θ,a≤θ≤b
ρ1φ,θ
0
ρ2φ,θ
32
3⁢2
φ1θ
φ2θ
π/4
14⁢π
a
b
2 π
2⁢π
Inert Integral: dρ dφ dθ
StudentMultivariateCalculusMultiInt,ρ=..,φ=..,θ=..,coordinates=sphericalρ,φ,θ,output=integral
∫02⁢π∫014⁢π∫03⁢2ρ2⁢sin⁡φⅆρⅆφⅆθ
Value:
StudentMultivariateCalculusMultiInt,ρ=..,φ=..,θ=.., coordinates=sphericalρ,φ,θ
36⁢2⁢π−36⁢π
Stepwise Evaluation:
StudentMultivariateCalculusMultiInt,ρ=.., φ=..,θ=..,coordinates=sphericalρ,φ,θ,output=steps
∫02⁢π∫0π4∫03⁢2ρ2⁢sin⁡φⅆρⅆφⅆθ=∫02⁢π∫0π4ρ3⁢sin⁡φ3ρ=0..3⁢2|ρ3⁢sin⁡φ3ρ=0..3⁢2ⅆφⅆθ=∫02⁢π∫0π418⁢sin⁡φ⁢2ⅆφⅆθ=∫02⁢π−18⁢cos⁡φ⁢2φ=0..π4|−18⁢cos⁡φ⁢2φ=0..π4ⅆθ=∫02⁢π18⁢2−18ⅆθ=18⁢2−18⁢θθ=0..2⁢π|18⁢2−18⁢θθ=0..2⁢π
Table 8.1.13(b) Task template implementing the MultiInt command iterating in the order dρ dφ dθ
Initialize
Tools≻Load Package: Student Multivariate Calculus
Loading Student:-MultivariateCalculus
Access the MultiInt command via the Context Panel
Type the integrand, 1.
Context Panel: Student Multivariate Calculus≻Integrate≻Iterated Fill in the fields of the two dialogs shown below.
Context Panel: Evaluate Integral
1→MultiInt∫02⁢π∫014⁢π∫03⁢2ρ2⁢sin⁡φⅆρⅆφⅆθ=36⁢2⁢π−36⁢π
Table 8.1.13(c) provides a solution from first principles.
Calculus Palette: Iterated triple-integral template
Context Panel: Evaluate and Display Inline
∫02 π∫0π/4∫032ρ2sinφ ⅆρ ⅆφ ⅆθ = 36⁢2⁢π−36⁢π
Table 8.1.13(c) Integration via first principles
Maple Solution - Coded
Table 8.1.13(d) obtains a solution via the MultiInt command in the Student MultivariateCalculus package. See Table 8.1.13(b) for an implementation of this integration via a task template.
Install the Student MultivariateCalculus package.
withStudent:-MultivariateCalculus:
MultiInt1,ρ=0..32,φ=0..π/4,θ=0..2 π,coordinates=sphericalρ,φ,θ,output=integral
MultiInt1,ρ=0..32,φ=0..π/4,θ=0..2 π,coordinates=sphericalρ,φ,θ = 36⁢2⁢π−36⁢π
Table 8.1.13(d) MultiInt command iterating in spherical coordinates in the order dρ dφ dθ
Table 8.1.13(e) implements the iterated integration via the top-level Int and int commands.
Intρ2sinφ,ρ=0..32,φ=0..π/4,θ=0..2 π=intρ2sinφ,ρ=0..32,φ=0..π/4,θ=0..2 π
∫02⁢π∫014⁢π∫03⁢2ρ2⁢sin⁡φⅆρⅆφⅆθ=36⁢2⁢1−12⁢2⁢π
Table 8.1.13(e) Top-level Int and int commands
<< Previous Example Section 8.1 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document