Chapter 8: Applications of Triple Integration
Section 8.1: Volume
Example 8.1.14
Use an iterated triple integral to obtain the volume of R, the region that is bounded inside by the surface ρ=1+cosφ and outside by the sphere ρ=2. (The variables ρ,φ,θ are spherical coordinates.)
Solution
Mathematical Solution
Figure 8.1.14(a) shows the region whose volume is obtained by iterating a triple integral in spherical coordinates in the order dρ dφ dθ.
∫02 π∫0π∫1+cosφ2ρ2sinφ dρ dφ dθ = 8 π
The sphere in Figure 8.1.14(a) has been drawn with a cut-away so that the inner surface ρ=1+cosφ is properly visible.
use plots in module() local p1,p2,p3; p1:=plot3d(2,theta=0..11*Pi/8,phi=0..Pi,coords=spherical); p2:=plot3d(1+cos(phi),theta=0 ..2*Pi,phi=0..Pi,coords=spherical,color=red); p3:=display(p1,p2,scaling=constrained,labels=[x,y,z], orientation=[-65,85,0],axes=frame,tickmarks=[3,3,5],lightmodel=light3); print(p3); end module: end use:
Figure 8.1.14(a) Surface inside sphere
Maple Solution - Interactive
Table 8.1.14(a) provides a solution by a task template that integrates in cylindrical coordinates and draws the region of integration.
Tools≻Tasks≻Browse: Calculus - Multivariate≻Integration≻Visualizing Regions of Integration≻Spherical
Evaluate ∭RΨρ,φ,θ dv and Graph R
Volume Element dv=ρ2sinφ×
dρ dφ dθ
dρ dθ dφ
dφ dρ dθ
dφ dθ dρ
dθ dφ dρ
dθ dρ dφ
, where Ψ=
F=
G=
b=
f=
g=
a=
Table 8.1.14(a) Task template integrating in spherical coordinates
(The "tail" attached to the graph of ρ=1+cosφ is an artifact of how Maple composed the graphs of the surfaces. Transparency has been applied to the graph of the sphere via the Context Panel for the graph drawn by the task template. Unfortunately, this task template provided no other means of modifying the graph.)
Since the iteration order can be taken as dρ dφ dθ, the task template in Table 8.1.14(a), using the MultiInt command from the Student MultivariateCalculus package, applies.
Tools≻Tasks≻Browse: Calculus - Multivariate≻Integration≻Multiple Integration≻Spherical
Iterated Triple Integral in Spherical Coordinates
(φ = colatitude, measured down from z-axis)
Integrand:
1
Region: ρ1φ,θ≤ρ≤ρ2φ,θ,φ1θ≤φ≤φ2θ,a≤θ≤b
ρ1φ,θ
1+cosφ
1+cos⁡φ
ρ2φ,θ
2
φ1θ
0
φ2θ
π
a
b
2 π
2⁢π
Inert Integral: dρ dφ dθ
StudentMultivariateCalculusMultiInt,ρ=..,φ=..,θ=..,coordinates=sphericalρ,φ,θ,output=integral
∫02⁢π∫0π∫1+cos⁡φ2ρ2⁢sin⁡φⅆρⅆφⅆθ
Value:
StudentMultivariateCalculusMultiInt,ρ=..,φ=..,θ=.., coordinates=sphericalρ,φ,θ
8⁢π
Stepwise Evaluation:
StudentMultivariateCalculusMultiInt,ρ=.., φ=..,θ=..,coordinates=sphericalρ,φ,θ,output=steps
∫02⁢π∫0π∫1+cos⁡φ2ρ2⁢sin⁡φⅆρⅆφⅆθ=∫02⁢π∫0πρ3⁢sin⁡φ3ρ=1+cos⁡φ..2|ρ3⁢sin⁡φ3ρ=1+cos⁡φ..2ⅆφⅆθ=∫02⁢π∫0πsin⁡φ⁢8−1+cos⁡φ33ⅆφⅆθ=∫02⁢π−8⁢cos⁡φ3+1+cos⁡φ412φ=0..π|−8⁢cos⁡φ3+1+cos⁡φ412φ=0..πⅆθ=∫02⁢π4ⅆθ=4⁢θθ=0..2⁢π|4⁢θθ=0..2⁢π
Table 8.1.14(b) Task template implementing the MultiInt command iterating in the order dρ dφ dθ
Initialize
Tools≻Load Package: Student Multivariate Calculus
Loading Student:-MultivariateCalculus
Access the MultiInt command via the Context Panel
Type the integrand, 1.
Context Panel: Student Multivariate Calculus≻Integrate≻Iterated Fill in the fields of the two dialogs shown below.
Context Panel: Evaluate Integral
1→MultiInt∫02⁢π∫0π∫1+cos⁡φ2ρ2⁢sin⁡φⅆρⅆφⅆθ=8⁢π
Table 8.1.14(c) provides a solution from first principles.
Calculus Palette: Iterated triple-integral template
Context Panel: Evaluate and Display Inline
∫02 π∫0π∫1+cosφ2ρ2sinφ ⅆρ ⅆφ ⅆθ = 8⁢π
Table 8.1.14(c) Integration via first principles
Maple Solution - Coded
Table 8.1.14(d) obtains a solution via the MultiInt command in the Student MultivariateCalculus package. See Table 8.1.14(b) for an implementation of this command via a task template.
Install the Student MultivariateCalculus package.
withStudent:-MultivariateCalculus:
MultiInt1,ρ=1+cosφ..2,φ=0..π,θ=0..2 π,coordinates=sphericalρ,φ,θ,output=integral
MultiInt1,ρ=1+cosφ..2,φ=0..π,θ=0..2 π,coordinates=sphericalρ,φ,θ = 8⁢π
Table 8.1.14(d) MultiInt command iterating in spherical coordinates in the order dρ dφ dθ
Table 8.1.14(e) implements the iterated integration via the top-level Int and int commands.
Intρ2sinφ,ρ=1+cosφ..2,φ=0..π,θ=0..2 π=intρ2sinφ,ρ=1+cosφ..2,φ=0..π,θ=0..2 π
∫02⁢π∫0π∫1+cos⁡φ2ρ2⁢sin⁡φⅆρⅆφⅆθ=8⁢π
Table 8.1.14(e) Top-level Int and int commands
<< Previous Example Section 8.1 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document