Chapter 8: Applications of Triple Integration
Section 8.1: Volume
Example 8.1.19
Use an iterated triple integral to obtain the volume of R, the first-octant region that lies between the cylinders r=1 and r=3, and that is bounded below by the plane z=0 and above, by the surface z=1+ x y.
Solution
Mathematical Solution
Figure 8.1.19(a) shows the solid whose volume is obtained by iterating a triple integral in cylindrical coordinates in the order dz dr dθ.
∫0π/2∫13∫01+r2cosθsinθr dz dr dθ = 10+2 π
Figure 8.1.19(a) Region R
Maple Solution - Interactive
Table 8.1.19(a) provides a solution by a task template that integrates in cylindrical coordinates and draws the region of integration.
Tools≻Tasks≻Browse: Calculus - Multivariate≻Integration≻Visualizing Regions of Integration≻Cylindrical
Evaluate ∭RΨr,θ,z dv and Graph R
Volume Element dv
r dz dr dθ
r dz dθ dr
r dr dθ dz
r dr dz dθ
r dθ dr dz
r dθ dz dr
, where Ψ=
F=
G=
b=
f=
g=
a=
Table 8.1.19(a) Task template integrating in cylindrical coordinates
Since the iteration order can be taken as dz dr dθ, the task template in Table 8.1.19(a), using the MultiInt command from the Student MultivariateCalculus package, applies.
Tools≻Tasks≻Browse: Calculus - Multivariate≻Integration≻Multiple Integration≻Cylindrical
Iterated Triple Integral in Cylindrical Coordinates
Integrand:
1
Region: z1r,θ≤z≤z2r,θ,r1θ≤r≤r2θ,a≤θ≤b
z1r,θ
0
z2r,θ
1+r2cosθsinθ
1+r2⁢cos⁡θ⁢sin⁡θ
r1θ
r2θ
3
a
b
π/2
π2
Inert Integral: dz dr dθ
(Note automatic insertion of Jacobian.)
StudentMultivariateCalculusMultiInt,z=..,r=..,θ=..,coordinates=cylindricalr,θ,z,output=integral
∫0π2∫13∫01+r2⁢cos⁡θ⁢sin⁡θrⅆzⅆrⅆθ
Value:
StudentMultivariateCalculusMultiInt,z=..,r=..,θ=..,coordinates=cylindricalr,θ,z
2⁢π+10
Stepwise Evaluation:
StudentMultivariateCalculusMultiInt,z=..,r=..,θ=..,coordinates=cylindricalr,θ,z,output=steps
∫0π2∫13∫01+r2⁢cos⁡θ⁢sin⁡θrⅆzⅆrⅆθ=∫0π2∫13r⁢zz=0..1+r2⁢cos⁡θ⁢sin⁡θ|r⁢zz=0..1+r2⁢cos⁡θ⁢sin⁡θⅆrⅆθ=∫0π2∫13r⁢1+r2⁢cos⁡θ⁢sin⁡θⅆrⅆθ=∫0π2cos⁡θ⁢sin⁡θ⁢r44+r22r=1..3|cos⁡θ⁢sin⁡θ⁢r44+r22r=1..3ⅆθ=∫0π220⁢cos⁡θ⁢sin⁡θ+4ⅆθ=4⁢θ+10⁢sin⁡θ2θ=0..π2|4⁢θ+10⁢sin⁡θ2θ=0..π2
Table 8.1.19(b) Task template implementing the MultiInt command iterating in the order dz dr dθ
Initialize
Tools≻Load Package: Student Multivariate Calculus
Loading Student:-MultivariateCalculus
Access the MultiInt command via the Context Panel
C=1+r2cosθsinθ→assign
Type the integrand, 1.
Context Panel: Student Multivariate Calculus≻Integrate≻Iterated Fill in the fields of the two dialogs shown below.
Context Panel: Evaluate Integral
1→MultiInt∫0π2∫13∫01+r2⁢cos⁡θ⁢sin⁡θrⅆzⅆrⅆθ=2⁢π+10
Table 8.1.19(c) provides a solution from first principles.
Calculus Palette: Iterated triple-integral template
Context Panel: Evaluate and Display Inline
∫0π/2∫13∫01+r2cosθsinθr ⅆz ⅆr ⅆθ = 2⁢π+10
Table 8.1.19(c) Integration via first principles
Maple Solution - Coded
Table 8.1.19(d) obtains a solution via the MultiInt command in the Student MultivariateCalculus package. See Table 8.1.19(b) for an implementation of the integration via a task template.
Install the Student MultivariateCalculus package.
withStudent:-MultivariateCalculus:
MultiInt1,z=0..1+r2cosθsinθ,r=1..3,θ=0..π/2,coordinates=cylindricalr,θ,z,output=integral
MultiInt1,z=0..1+r2cosθsinθ,r=1..3,θ=0..π/2,coordinates=cylindricalr,θ,z =
Table 8.1.19(d) MultiInt command iterating in cylindrical coordinates in the order dz dr dθ
Table 8.1.19(e) implements the iterated integration via the top-level Int and int commands.
Intr,z=0..1+r2cosθsinθ,r=1..3,θ=0..π/2=intr,z=0..1+r2cosθsinθ,r=1..3,θ=0..π/2
∫0π2∫13∫01+r2⁢cos⁡θ⁢sin⁡θrⅆzⅆrⅆθ=2⁢π+10
Table 8.1.19(e) Top-level Int and int commands
<< Previous Example Section 8.1 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document