Chapter 8: Applications of Triple Integration
Section 8.1: Volume
Example 8.1.30
Use an iterated triple integral to obtain the volume of R, the region common to the three cylinders x2+y2=1, x2+z2=1, y2+z2=1.
Solution
Mathematical Solution
Figure 8.1.30(a) shows the two intersecting cylinders; Figure 8.1.30(b), the actual region R; and Figure 8.1.30(c), one-quarter of the top-half of the region.
use plots, plottools in EX8130:=module() local p1,p2,p3,p4,p5; export p6; p1:=cylinder([0,0,-2],1,4,color=red); p2:=cylinder([0,0,-2],1,4,color=blue); p3:=cylinder([0,0,-2],1,4,color=green); p4:=rotate(p2,0,(1/2)*Pi,0); p5:=rotate(p3,(1/2)*Pi,0,0); p6:=display(p1,p4,p5,scaling=constrained,labels=[x,y,z],axes=frame,tickmarks=[5,5,5],orientation=[-60,70,0]); print(p6); end module: end use:
Figure 8.1.30(a) Cylinders
Figure 8.1.30(b) Region R
use plots in module() local p1,p2,p3; p1:=display(EX8130:-p6,view=[0..1,0..1,0..1],axes=box,orientation=[-75,65,0],tickmarks=[2,2,2],axes=frame): p2:=plot3d([x,x,z],x=0..1/sqrt(2),z=0..sqrt(1-x^2)): p3:=display(p1,p2,orientation=[-150,80,0],lightmodel=none); print(p3); end module: end use:
Figure 8.1.30(c) Cut-away
Although the volume of R can be found by integrating in Cartesian coordinates, it turns out to be easier to work in cylindrical coordinates, iterating in the order dz dr dθ. The complete volume of R is then
8∫5 π/47 π/4∫01∫01−r2sin2θr dz dr dθ = 82−2 ≐ 4.69
Note the consistent coloring through Figures 8.1.30(1 - c). The cylinder y2+z2=1, parallel to the x-axis, is drawn in blue in Figure 8.1.30(a), and parts of this cylinder appearing in the other two figures are likewise in blue. Similarly with the cylinder x2+z2=1, parallel to the y-axis, and drawn in green; and with the cylinder x2+y2=1, parallel to the z-axis, and drawn in red.
The upper bound on the inner integral is z=1−y2 expressed in cylindrical coordinates. In Figure 8.1.30(c), the highest point on the blue portion of the surface is directly above the origin. The bounds on θ are determined from the intersection of the blue and green cylinders by solving the equations x2+z2=1 and y2+z2−1 for y=±x.
Maple Solution - Interactive
Table 8.1.30(a) provides, via a visualization task template, a solution in cylindrical coordinates. The volume found is one-eighth the total volume.
Tools≻Tasks≻Browse: Calculus - Multivariate≻Integration≻Visualizing Regions of Integration≻Cylindrical
Evaluate ∭RΨr,θ,z dv and Graph R
Volume Element dv
r dz dr dθ
r dz dθ dr
r dr dθ dz
r dr dz dθ
r dθ dr dz
r dθ dz dr
, where Ψ=
F=
G=
b=
f=
g=
a=
Table 8.1.30(a) Solution in cylindrical coordinates via a visualization task template
Table 8.1.30(b) provides, via a task template that implements the MultiInt command from the Student MultivariateCalculus package, a solution in cylindrical coordinates.
Tools≻Tasks≻Browse: Calculus - Multivariate≻Integration≻Multiple Integration≻Cylindrical
Iterated Triple Integral in Cylindrical Coordinates
Integrand:
1
Region: z1r,θ≤z≤z2r,θ,r1θ≤r≤r2θ,a≤θ≤b
z1r,θ
0
z2r,θ
1−r2sin2θ
1−r2⁢sin⁡θ2
r1θ
r2θ
a
5 π/4
5⁢π4
b
7 π/4
7⁢π4
Inert Integral: dz dr dθ
(Note automatic insertion of Jacobian.)
StudentMultivariateCalculusMultiInt,z=..,r=..,θ=..,coordinates=cylindricalr,θ,z,output=integral
∫5⁢π47⁢π4∫01∫01−r2⁢sin⁡θ2rⅆzⅆrⅆθ
Value:
StudentMultivariateCalculusMultiInt,z=..,r=..,θ=..,coordinates=cylindricalr,θ,z
2−2
Stepwise Evaluation:
StudentMultivariateCalculusMultiInt,z=..,r=..,θ=..,coordinates=cylindricalr,θ,z,output=steps
∫5⁢π47⁢π4∫01∫01−r2⁢sin⁡θ2rⅆzⅆrⅆθ=∫5⁢π47⁢π4∫01r⁢zz=0..1−r2⁢sin⁡θ2|r⁢zz=0..1−r2⁢sin⁡θ2ⅆrⅆθ=∫5⁢π47⁢π4∫01r⁢1−r2⁢sin⁡θ2ⅆrⅆθ=∫5⁢π47⁢π4−1−r2⁢sin⁡θ2323⁢sin⁡θ2r=0..1|−1−r2⁢sin⁡θ2323⁢sin⁡θ2r=0..1ⅆθ=∫5⁢π47⁢π4−1−sin⁡θ232−13⁢sin⁡θ2ⅆθ=−cot⁡θ3+cos⁡θ⁢sin⁡θ2+13⁢sin⁡θ⁢cos⁡θ2θ=5⁢π4..7⁢π4|−cot⁡θ3+cos⁡θ⁢sin⁡θ2+13⁢sin⁡θ⁢cos⁡θ2θ=5⁢π4..7⁢π4
Table 8.1.30(b) Task template implementation of MultiInt solution in cylindrical coordinates
Table 8.1.30(c) provides a cylindrical-coordinate solution from first principles.
Calculus palette: Iterated triple integral template Complete the template as shown to the right.
Context Panel: Evaluate and Display Inline
8∫5 π/47 π/4∫01∫01−r2sin2θr ⅆz ⅆr ⅆθ = 16−8⁢2
Table 8.1.30(c) From first principles, a solution in cylindrical coordinates
Maple Solution - Coded
Table 8.1.30(d) provides, from first principles using the top-level Int and int commands, a solution in cylindrical coordinates.
8 Intr,z=0..1−r2sin2θ,r=0..1,θ=5 π/4..7 π/4=8 intr,z=0..1−r2sin2θ,r=0..1,θ=5 π/4..7 π/4
8⁢∫5⁢π47⁢π4∫01∫01−r2⁢sin⁡θ2rⅆzⅆrⅆθ=16−8⁢2
Table 8.1.30(d) From first principles, solutions in Cartesian and cylindrical coordinates.
Table 8.1.30(e) demonstrates the syntax applying the MultiInt command in cylindrical coordinates.
Initialize
Install the Student MultivariateCalculus package.
withStudent:-MultivariateCalculus:
Context Panel: Assign Name
h=1−r2sin2θ→assign
Implement the MultiInt command in cylindrical coordinates
8 MultiInt1,z=0..h,r=0..1,θ=5 π4..7 π4,coordinates=cylindricalr,θ,z,output=integral
8⁢∫5⁢π47⁢π4∫01∫01−r2⁢sin⁡θ2rⅆzⅆrⅆθ
8 MultiInt1,z=0..h,r=0..1,θ=5 π4..7 π4,coordinates=cylindricalr,θ,z = 16−8⁢2
Table 8.1.30(e) Application of the MultiInt command in cylindrical coordinates
<< Previous Example Section 8.1 Next Section >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document