Chapter 8: Applications of Triple Integration
Section 8.3: First Moments
Example 8.3.1
Obtain the centroid of R, the region interior to the cylinder x2+y2=9 that is bounded below by the xy-plane, and above by the paraboloid z=x2+y2.
Impose the density δr,θ,z=z r2sinθ/6 on R and find the resulting center of mass.
(See Example 8.1.3.)
Solution
Mathematical Solution
The volume of R, found in Example 8.1.3, is given by
V=∫02 π∫03∫0r2r dz dr dθ = 812 π
Table 8.3.1(a) lists the first moments and the coordinates of the centroid.
First Moments
Centroid
Myz=∫02⁢π∫03∫0r2cosθ⁢r2 dz dr dθ=0
x&conjugate0;=MyzV=0V=0
Mxz=∫02⁢π∫03∫0r2sinθ⁢r2 dz dr dθ=0
y&conjugate0;=MxzV=0V=0
Mxy=∫02⁢π∫03∫0r2z⁢r dz dr dθ=2432⁢π
z&conjugate0;=MxyV=2432⁢π812⁢π=3
Table 8.3.1(a) First moments and the coordinates of the centroid
When the region R supports the density δr,θ,z=z r2sinθ/6, the total mass in R is
m=∫02⁢π∫03∫0r2r3⁢z⁢sin16⁢θ dz dr dθ = 1968316
Table 8.3.1(b) lists the first moments and the coordinates of the center of mass under this condition.
Center of Mass
Myz=∫02⁢π∫03∫0r2cosθ⁢r4⁢z⁢sinθ6 dz dr dθ = −656170
x&conjugate0;=Myzm=−6561701968316 = −8105
Mxz=∫02⁢π∫03∫0r2sinθ⁢r4⁢z⁢sinθ6 dz dr dθ = −1968335⁢3
y&conjugate0;=Mxzm=−1968335⁢31968316 = −1635⁢3
Mxy=∫02⁢π∫03∫0r2z2⁢r3⁢sinθ6 dz dr dθ = 5904910
z&conjugate0;=Mxym=59049101968316 = 245
Table 8.3.1(b) First moments and the coordinates of the center of mass
In each integral, the Jacobian r must be inserted, and where applicable, the "lever arms" x and y are replaced respectively by x=r cosθ, y=r sinθ.
Maple Solution - Interactive
Based on the CenterOfMass command in the Student MultivariateCalculus package, the task template in Table 8.3.1(c) will find the centroid of R when the density is set to 1.
Tools≻Tasks≻Browse: Calculus - Multivariate≻Integration≻Center of Mass≻Cylindrical
Center of Mass for 3-D Region in Cylindrical Coordinates
Density:
1
Region: z1r,θ≤z≤z2r,θ,r1θ≤r≤r2θ,a≤θ≤b
z1r,θ
0
z2r,θ
r2
r1θ
r2θ
3
a
b
2 π
2⁢π
Moments ÷ Mass:
Inert Integral - dz dr dθ
StudentMultivariateCalculusCenterOfMass,z=..,r=..,θ=..,coordinates=cylindricalr,θ,z,output=integral
∫02⁢π∫03∫0r2cos⁡θ⁢r2ⅆzⅆrⅆθ∫02⁢π∫03∫0r2rⅆzⅆrⅆθ,∫02⁢π∫03∫0r2sin⁡θ⁢r2ⅆzⅆrⅆθ∫02⁢π∫03∫0r2rⅆzⅆrⅆθ,∫02⁢π∫03∫0r2z⁢rⅆzⅆrⅆθ∫02⁢π∫03∫0r2rⅆzⅆrⅆθ
Explicit values for r&conjugate0;, θ&conjugate0;, and z&conjugate0;, the center of mass given in cylindrical coordinates:
StudentMultivariateCalculusCenterOfMass,z=..,r=..,θ=..,coordinates=cylindricalr,θ,z
0,0,3
Table 8.3.1(c) Centroid computed by task template that implements the CenterOfMass command
Based on the CenterOfMass command in the Student MultivariateCalculus package, the task template in Table 8.3.1(d) will find the center of mass of R for a given density.
z r2sinθ/6
z⁢r2⁢sin⁡16⁢θ
∫02⁢π∫03∫0r2cos⁡θ⁢r4⁢z⁢sin⁡16⁢θⅆzⅆrⅆθ∫02⁢π∫03∫0r2r3⁢z⁢sin⁡16⁢θⅆzⅆrⅆθ,∫02⁢π∫03∫0r2sin⁡θ⁢r4⁢z⁢sin⁡16⁢θⅆzⅆrⅆθ∫02⁢π∫03∫0r2r3⁢z⁢sin⁡16⁢θⅆzⅆrⅆθ,∫02⁢π∫03∫0r2z2⁢r3⁢sin⁡16⁢θⅆzⅆrⅆθ∫02⁢π∫03∫0r2r3⁢z⁢sin⁡16⁢θⅆzⅆrⅆθ
8105⁢109,arctan⁡6⁢3−π,245
Table 8.3.1(d) Centroid computed by task template that implements the CenterOfMass command
Maple Solution - Coded
In Table 8.3.1(e), the centroid of R is obtained via the CenterOfMass command from the Student MultivariateCalculus package, provided the density is set equal to 1.
Initialize
Install the Student MultivariateCalculus package.
withStudent:-MultivariateCalculus:
Apply the CenterOfMass command from the Student MultivariateCalculus package
CenterOfMass1,z=0..r2,r=0..3,θ=0..2 π,coordinates=cylindricalr,θ,z,output=integral
C≔CenterOfMass1,z=0..r2,r=0..3,θ=0..2 π,coordinates=cylindricalr,θ,z
Table 8.3.1(e) Centroid in cylindrical coordinates
The coordinates C = 0,0,3 are cylindrical, but the symmetry in Figure 8.1.3(a) makes it clear that the Cartesian coordinates of the centroid are x,y,z=0,0,3.
In Table 8.3.1(f), the center of mass is obtained via the CenterOfMass command from the Student MultivariateCalculus package.
Define the density δ.
δ≔z r2sinθ/6:
CenterOfMassδ,z=0..r2,r=0..3,θ=0..2 π,coordinates=cylindricalr,θ,z,output=integral
CM≔CenterOfMassδ,z=0..r2,r=0..3,θ=0..2 π,coordinates=cylindricalr,θ,z
Table 8.3.1(f) Center of mass in cylindrical coordinates
The coordinates CM = 8105⁢109,arctan⁡6⁢3−π,245 are cylindrical; the Cartesian equivalents, obtained by making the appropriate substitutions, are then
evalr cosθ,r sinθ,z,Equater,θ,z,CM
−8105,−1635⁢3,245
<< Chapter Overview Section 8.3 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document