Chapter 8: Applications of Triple Integration
Section 8.3: First Moments
Example 8.3.12
Obtain the centroid of R, the first-octant region that is bounded by the coordinate planes, and the additional planes x=1, x+y+z=2.
Impose the density δx,y,z=x y2z3 on R and find the resulting center of mass.
(See Example 8.1.29.)
Solution
Mathematical Solution
The volume of R, found in Example 8.1.29, is given by
V=∫01∫02−x∫02−x−71 dz dy dx = 76
Table 8.3.12(a) lists the first moments and the coordinates of the centroid.
First Moments
Centroid
Myz=∫01∫02−x∫02−x−yx dz dy dx=1124
x&conjugate0;=MyzV=112476=1128
Mxz=∫01∫02−x∫02−x−yy dz dy dx=58
y&conjugate0;=MxzV=5876=1528
Mxy=∫01∫02−x∫02−x−yz dz dy dx=58
z&conjugate0;=MxyV=5876=1528
Table 8.3.12(a) First moments and the coordinates of the centroid
When the region R supports the density δx,y,z=x y2z3, the total mass in R is
m=∫01∫02−x∫02−x−yx y2z3 dz dy dx = 25115120
Table 8.3.12(b) lists the first moments and the coordinates of the center of mass under this condition.
Center of Mass
Myz=∫01∫02−x∫02−x−yx2 y2z3 dz dy dx = 12118900
x&conjugate0;=Myzm=1211890025115120 = 4841255
Mxz=∫01∫02−x∫02−x−yx y3z3 dz dy dx = 1013100800
y&conjugate0;=Mxzm=101310080025115120 = 30395020
Mxy=∫01∫02−x∫02−x−yx y2z4 dz dy dx = 101375600
z&conjugate0;=Mxym=10137560025115120 = 10131255
Table 8.3.12(b) First moments and the coordinates of the center of mass
Maple Solution - Interactive
Based on the CenterOfMass command in the Student MultivariateCalculus package, the task template in Table 8.3.12(c) will find the centroid of R when the density is set to 1.
Tools≻Tasks≻Browse: Calculus - Multivariate≻Integration≻Center of Mass≻Cartesian 3-D
Center of Mass for 3D Region in Cartesian Coordinates
Density:
1
Region: z1x,y≤z≤z2x,y,y1x≤y≤y2x,a≤x≤b
z1x,y
0
z2x,y
2−x−y
y1x
y2x
2−x
a
b
Moments÷Mass:
Inert Integral - dz dy dx
StudentMultivariateCalculusCenterOfMass,z=.., y=..,x=..,output=integral
∫01∫02−x∫02−x−yxⅆzⅆyⅆx∫01∫02−x∫02−x−y1ⅆzⅆyⅆx,∫01∫02−x∫02−x−yyⅆzⅆyⅆx∫01∫02−x∫02−x−y1ⅆzⅆyⅆx,∫01∫02−x∫02−x−yzⅆzⅆyⅆx∫01∫02−x∫02−x−y1ⅆzⅆyⅆx
Explicit values for x&conjugate0;, y&conjugate0;, and z&conjugate0;
StudentMultivariateCalculusCenterOfMass,z=.., y=..,x=..
1128,1528,1528
Table 8.3.12(c) Centroid computed by task template that implements the CenterOfMass command
Based on the CenterOfMass command in the Student MultivariateCalculus package, the task template in Table 8.3.12(d) will find the center of mass of R for a given density.
x y2z3
x⁢y2⁢z3
∫01∫02−x∫02−x−yx2⁢y2⁢z3ⅆzⅆyⅆx∫01∫02−x∫02−x−yx⁢y2⁢z3ⅆzⅆyⅆx,∫01∫02−x∫02−x−yy3⁢x⁢z3ⅆzⅆyⅆx∫01∫02−x∫02−x−yx⁢y2⁢z3ⅆzⅆyⅆx,∫01∫02−x∫02−x−yz4⁢x⁢y2ⅆzⅆyⅆx∫01∫02−x∫02−x−yx⁢y2⁢z3ⅆzⅆyⅆx
4841255,30395020,10131255
Table 8.3.12(d) Centroid computed by task template that implements the CenterOfMass command
Maple Solution - Coded
In Table 8.3.12(e), the centroid of R is obtained via the CenterOfMass command from the Student MultivariateCalculus package, provided the density is set equal to 1.
Initialize
Install the Student MultivariateCalculus package.
withStudent:-MultivariateCalculus:
Apply the CenterOfMass command from the Student MultivariateCalculus package
CenterOfMass1,z=0..2−x−y,y=0..2−x,x=0..1,output=integral
C≔CenterOfMass1,z=0..2−x−y,y=0..2−x,x=0..1
Table 8.3.12(e) Centroid in Cartesian coordinates
In Table 8.3.12(f), the center of mass is obtained via the CenterOfMass command from the Student MultivariateCalculus package.
Define the density δ.
δ≔x y2z3:
CenterOfMassδ,z=0..2−x−y,y=0..2−x,x=0..1,output=integral
CM≔CenterOfMassδ,z=0..2−x−y,y=0..2−x,x=0..1
evalfCM = 0.3856573705,0.6053784861,0.8071713147
Table 8.3.12(f) Center of mass in Cartesian coordinates
<< Previous Example Section 8.3 Next Section >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document