Chapter 8: Applications of Triple Integration
Section 8.5: Changing Variables in a Triple Integral
Example 8.5.1
Find the total mass in R, the interior of the ellipsoid x/22−y/32−z/42=1, if its density is δx,y,z=1−x/22−y/32−z/42.
Solution
Mathematical Solution
Make the change of variables x=2 u,y=3 v,z=4 w, for which the Jacobian is
∂x,y,z∂u,v,w=∂uxyz∂vxyz∂wxyz = 200030004 = 24
The ellipsoid is now described by u2+v2+w2=1, and the density by δ=1−u2−v2−w2.
The total mass is then given by the triple integral
m=∫∫∫R′δu,v,w dV
where R′ is now the interior of the unit sphere centered at the origin u,v,w=0,0,0, and dV is the element of volume: 24 times the appropriate triple of differentials du, dv, dw.
Next, change to spherical coordinates according to the transformation laws
u=ρ sinφcosθ,v=ρ sinφsinθ,w=ρ cosφ
The density is then δρ,φ,θ=1−ρ2, so the total mass is given by the iterated integral
m=24∫02 π∫0π∫011−ρ2 ρ2sinφ dρ dφ dθ = 6 π2
Maple Solution - Interactive
Define the two changes of coordinates needed
Context Panel: Assign Name
T1=x=2 u,y=3 v,z=4 w→assign
T2=u=ρ sinφcosθ,v=ρ sinφsinθ,w=ρ cosφ→assign
Make two successive changes of coordinates in the density function
Expression palette: Evaluation template Press the Enter key.
Context Panel: Simplify≻Simplify
1−x/22−y/32−z/42x=a|f(x)T1
112⁢−144⁢u2−144⁢v2−144⁢w2+144
= simplify
−u2−v2−w2+1
−u2−v2−w2+1x=a|f(x)T2
−ρ2⁢sin⁡φ2⁢cos⁡θ2−ρ2⁢sin⁡φ2⁢sin⁡θ2−ρ2⁢cos⁡φ2+1
−ρ2+1
Obtain the Jacobian of the transformation from x,y,z to u,v,w
Create a list of the expressions defining x,y,z: Expression palette: Evaluation template Context Panel: Evaluate and Display Inline
Context Panel: Jacobian Matrix≻u,v,w
Context Panel: Standard Operations≻Determinant
x,y,zx=a|f(x)T1 = 2⁢u,3⁢v,4⁢w→Jacobian →determinant24
Integrate the density over the unit sphere
Calculus palette: Iterated triple-integral template
Context Panel: Evaluate and Display Inline
24∫02 π∫0π∫011−ρ2 ρ2sinφ ⅆρ ⅆφ ⅆθ = 6⁢π2
Of course, the integration over the unit sphere could have been implemented with the task template in Table 8.5.1(a).
Tools≻Tasks≻Browse: Calculus - Vector≻Integration≻Multiple Integration≻3-D≻Over a Sphere
Integrate f over a Sphere
fx,y,zorfρ,φ,θ} =
Center a,b,c: a=, b=, c= Radius =
dθ dφ dρ
Table 8.5.1(a) Task template for integration over a sphere
Maple Solution - Coded
T1≔x=2 u,y=3 v,z=4 w:
T2≔u=ρ sinφcosθ,v=ρ sinφsinθ,w=ρ cosφ:
Use the eval command twice and apply the simplify command to the result.
simplifyevaleval1−x/22−y/32−z/42,T1,T2 = −ρ2+1
Student:-MultivariateCalculus:-Jacobian2 u,3 v,4 w,u,v,w,output=determinant = 24
Int241−ρ2 ρ2sinφ,ρ=0..1,φ=0..π,θ=0..2 π=int241−ρ2 ρ2sinφ,ρ=0..1,φ=0..π,θ=0..2 π
∫02⁢π∫0π∫0124⁢−ρ2+1⁢ρ2⁢sin⁡φⅆρⅆφⅆθ=6⁢π2
<< Chapter Overview Section 8.5 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document