Chapter 9: Vector Calculus
Section 9.2: Vector Objects
Example 9.2.10
Express in polar coordinates the Cartesian vector field F=fx,y i+gx,y j.
Solution
Mathematical Solution
Figure 9.2.10(a) provides a schematic of the polar coordinate curves pulled back onto the Cartesian plane.
At one point, namely r,θ=3/2,π/3, the unit basis vectors for polar coordinates are drawn.
The green vector is er, while the black one is eθ.
Clearly, as this pair of mutually orthogonal unit vectors is drawn at different points on the polar coordinate curves, they will change orientation, that is, exhibit position dependence.
use plots, Student:-VectorCalculus in module() local p1,p2,p3,vr,vt; p1:=coordplot(polar,[0..3,0..2*Pi],labeling=true,scaling=constrained);vr:=RootedVector(root=Vector(<1.5,Pi/3>,polar),<cos(Pi/3),sin(Pi/3)>); vt:=RootedVector(root=Vector(<1.5,Pi/3>,polar),<-sin(Pi/3),cos(Pi/3)>); p2:=PlotVector([vr,vt],width=.1,color=[green,black]); p3:=display(p1,p2,scaling=constrained); print(p3); end module: end use:
Figure 9.2.10(a) Polar coordinates
The basis vectors suggested by Figure 9.2.10(a) are the normalized versions of ∂R∂r and ∂R∂θ, where R is the position vector to the point x,y=r cosθ,r sinθ. Consequently,
er=∂R∂r = cos(θ)sin(θ) and eθ=1r∂R∂θ = 1r −r sin(θ)r cos(θ)=−sin(θ)cos(θ)
Writing er=cosθ i+sinθ j and eθ=−sinθ i+cosθ j, and solving for i and j in terms of er and eθ gives
i=cosθ er−sinθ eθ and j=sinθ er+cosθ eθ
In polar coordinates, the Cartesian vector field F=fx,y i+gx,y j is given by
fr cosθ,r sinθ cos(θ)−sin(θ)+gr cosθ,r sinθ sin(θ)cos(θ)
which simplifies to
fr cosθ,r sinθcos(θ)+gr cosθ,r sinθsin(θ)−fr cosθ,r sinθsin(θ)+gr cosθ,r sinθcos(θ)
Consequently, when changing coordinates in a vector or vector field, it is not enough to change coordinates in the components. The change in the basis vectors must also be taken into account.
Maple Solution - Interactive
Initialize
Tools≻Load Package: Student Vector Calculus
Loading Student:-VectorCalculus
Tools≻Tasks≻Browse: Calculus - Vector≻ Vector Algebra and Settings≻ Display Format for Vectors
Press the Access Settings button and select "Display as Column Vector"
Display Format for Vectors
Define the position vector R
Context Panel: Assign to a Name≻R
r cosθ,r sinθ→assign to a nameR
Obtain a representation of er
Write the name R. Context Panel: Evaluate and Display Inline
Context Panel: Student Vector Calculus≻Differentiate≻With Respect To≻r
Context Panel: Assign to a Name≻Er
R = →differentiate →assign to a nameEr
Obtain a representation of eθ
Context Panel: Student Vector Calculus≻Differentiate≻With Respect To≻θ
Context Panel: Student Vector Calculus≻Normalize≻Euclidean
Context Panel: Simplify≻Assuming Positive
Context Panel: Assign to a Name≻Et
R = →differentiate →Euclidean-normalize →assuming positive →assign to a nameEt
Solve for i and j in terms of er and eθ
Write a sequence of two equations relating i and j to er and eθ; press the Enter key.
Context Panel: Solve≻Solve for Variables≻i,j
Context Panel: Simplify≻Trig
Context Panel: Assign to a Name≻S
Er·i,j=er,Et·i,j=eθ
cos⁡θ⁢i+sin⁡θ⁢j=er,−sin⁡θ⁢i+cos⁡θ⁢j=eθ
→solve (specified)
i=−sin⁡θ⁢eθ−cos⁡θ⁢ersin⁡θ2+cos⁡θ2,j=sin⁡θ⁢er+eθ⁢cos⁡θsin⁡θ2+cos⁡θ2
= simplify trig
i=−sin⁡θ⁢eθ+cos⁡θ⁢er,j=sin⁡θ⁢er+eθ⁢cos⁡θ
→assign to a name
S
Introduce polar coordinates in the components
Expression palette: Evaluation template Press the Enter key.
Context Panel: Assign to a Name≻temp
fx,y i+gx,y jx=a|f(x)x=r cosθ,y=r sinθ = f⁡r⁢cos⁡θ,r⁢sin⁡θ⁢i+g⁡r⁢cos⁡θ,r⁢sin⁡θ⁢j→assign to a nametemp
Change the basis vectors
Context Panel: Collect≻Name≻e[r]
Context Panel: Collect≻Name≻e[theta]
tempx=a|f(x)S
f⁡r⁢cos⁡θ,r⁢sin⁡θ⁢−sin⁡θ⁢eθ+cos⁡θ⁢er+g⁡r⁢cos⁡θ,r⁢sin⁡θ⁢sin⁡θ⁢er+eθ⁢cos⁡θ
= collect w.r.t. e[r]
f⁡r⁢cos⁡θ,r⁢sin⁡θ⁢cos⁡θ+g⁡r⁢cos⁡θ,r⁢sin⁡θ⁢sin⁡θ⁢er−f⁡r⁢cos⁡θ,r⁢sin⁡θ⁢sin⁡θ⁢eθ+g⁡r⁢cos⁡θ,r⁢sin⁡θ⁢eθ⁢cos⁡θ
= collect w.r.t. e[theta]
−f⁡r⁢cos⁡θ,r⁢sin⁡θ⁢sin⁡θ+g⁡r⁢cos⁡θ,r⁢sin⁡θ⁢cos⁡θ⁢eθ+f⁡r⁢cos⁡θ,r⁢sin⁡θ⁢cos⁡θ+g⁡r⁢cos⁡θ,r⁢sin⁡θ⁢sin⁡θ⁢er
Maple Solution - Coded
Install the Student VectorCalculus package and execute the BasisFormat command.
withStudent:-VectorCalculus:BasisFormatfalse:
Define the vector field F
Apply the VectorField command.
F≔VectorFieldfx,y,gx,y:
Change to polar coordinates by applying the MapToBasis command
MapToBasisF,polarr,θ
The column vector returned by the MapToBasis command gives the components of the vector field in polar coordinates. The basis vectors would be Maple's "barred" vectors, the "moving" basis vectors that are a function of position.
A solution from first principles is more enlightening.
Define R, the position vector in polar coordinates
Use the PositionVector command with the optional name of a coordinate system.
R≔PositionVectorr,θ,polar
By differentiation and normalization, obtain unit tangent vectors along the polar coordinate curves
Er≔diffR,r
Et≔NormalizediffR,θ assuming r>0
Express these unit vectors in terms of i and j, equate to the names er and et, and solve for i and j
q1≔DotProductEr,i,j=er
cos⁡θ⁢i+sin⁡θ⁢j=er
q2≔DotProductEt,i,j=et
−sin⁡θ⁢i+cos⁡θ⁢j=et
Apply the solve and simplify commands.
S≔simplifysolveq1,q2,i,j
i=cos⁡θ⁢er−sin⁡θ⁢et,j=et⁢cos⁡θ+sin⁡θ⁢er
In the field F=x y i+x/y j, replace i and j with their equivalents in terms of er and et and x and y with their equivalents in polar coordinates
temp≔collectevalfx,y,gx,y·i,j,S,er,et
f⁡x,y⁢cos⁡θ+g⁡x,y⁢sin⁡θ⁢er+cos⁡θ⁢g⁡x,y−sin⁡θ⁢f⁡x,y⁢et
evaltemp,x=r cosθ,y=r sinθ
f⁡r⁢cos⁡θ,r⁢sin⁡θ⁢cos⁡θ+g⁡r⁢cos⁡θ,r⁢sin⁡θ⁢sin⁡θ⁢er+−f⁡r⁢cos⁡θ,r⁢sin⁡θ⁢sin⁡θ+g⁡r⁢cos⁡θ,r⁢sin⁡θ⁢cos⁡θ⁢et
Compare
MapToBasisF,polarr,θ
<< Previous Example Section 9.2 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document