Chapter 9: Vector Calculus
Section 9.3: Differential Operators
Example 9.3.11
Compute the curl of the Cartesian vector field F=y i−z j−x k, then change to spherical coordinates and again obtain the curl. Transform the result back to Cartesian coordinates and compare to the original results.
Solution
Mathematical Solution
The curl of F:
∇×F=ijk∂x∂y∂zy−z−x = 11−1
where the notation ∂x stands for ∂∂x, etc.
From Example 9.2.11, the Cartesian vector field a i+b j+c k then becomes
a cos(θ)sin(φ)cos(θ)cos(φ)−sin(θ)+b sin(θ)sin(φ)sin(θ)cos(φ)cos(θ)+c cos(φ)−sin(φ)0
so F becomes
ρ sinθsinφcos(θ)sin(φ)cos(θ)cos(φ)−sin(θ) − ρ cosφsin(θ)sin(φ)sin(θ)cos(φ)cos(θ)−ρ cosθsinφ cos(φ)−sin(φ)0
or
G=ρ⁢sin2φ⁢sinθ⁢cosθ−ρ cosφ⁢sinθ⁢sinφ−ρ⁢sinφ⁢cos(φ)cosθρ⁢sinφ⁢sinθ⁢cosθ⁢cosφ−ρ cos2φ⁢sinθ+ρ⁢sin2φ⁢cosθ−ρ sinφ⁢sin2θ−ρ⁢cos⁡φ⁢cos⁡θ
If the components of G are taken as f,g,h, respectively, and the recipe for the curl in spherical coordinates applied, the results will be as shown below.
h cos(φ)ρ sin(φ)+hφρ−gθρ sin(φ)fθρ sin(φ)−hρ−hρgρ+gρ−fφρ→sin⁡φ⁢sin⁡θ+sin⁡φ⁢cos⁡θ−cos⁡φcos⁡φ⁢sin⁡θ+cos⁡φ⁢cos⁡θ+sin⁡φ−sin⁡θ+cos⁡θ≡uvw
The Cartesian form of this vector is given by
u cosθsin(φ)sin⁡θ⁢sin⁡φcos⁡φ+v cosθcos(φ)sinθ⁢cosφ−sinφ+w −sin⁡θcos⁡θ0
which simplifies to i−j−k. For example, consider the third component, namely,
sin⁡φ⁢sin⁡θ+sin⁡φ⁢cos⁡θ−cosφ cosφ −cos⁡φ⁢sin⁡θ+cos⁡φ⁢cos⁡θ+sin⁡φ sinφ
= 0+0−cos2φ+sin2φ= −1
with similar, but more tedious results, for the other two components.
Maple Solution - Interactive
Initialize
Tools≻Load Package: Student Vector Calculus
Loading Student:-VectorCalculus
Tools≻Tasks≻Browse: Calculus - Vector≻ Vector Algebra and Settings≻ Display Format for Vectors
Press the Access Settings button and select "Display as Column Vector"
Display Format for Vectors
Define the Cartesian vector field F
Write the free vector whose components are those of F. Context Panel: Evaluate and Display Inline
Context Panel: Student Vector Calculus≻Conversions≻To Vector Field
Context Panel: Assign to a Name≻F
y,−z,−x = y−z−x→to Vector Fieldy−z−x→assign to a nameF
Obtain the curl of F
Common Symbols palette: Del and cross-product operators.
Context Panel: Evaluate and Display Inline
∇×F =
Alternate calculation of the curl of F
Write the name F. Context Panel: Evaluate and Display Inline
Context Panel: Student Vector Calculus≻Curl
F = →curl
Change F to spherical coordinates
Context Panel: Student Vector Calculus≻Conversions≻Change Co-ordinate System (Complete dialog as per figure to the right.)
Context Panel: Assign to a Name≻G
F = y−z−x→change coordinatesρ⁢sin⁡φ2⁢sin⁡θ⁢cos⁡θ−ρ⁢sin⁡φ⁢cos⁡θ⁢cos⁡φ−ρ⁢cos⁡φ⁢sin⁡θ⁢sin⁡φρ⁢sin⁡φ⁢sin⁡θ⁢cos⁡θ⁢cos⁡φ+ρ⁢sin⁡φ2⁢cos⁡θ−ρ⁢cos⁡φ2⁢sin⁡θ−ρ⁢sin⁡φ⁢sin⁡θ2−ρ⁢cos⁡φ⁢cos⁡θ→assign to a nameG
Obtain the curl in spherical coordinates
Common Symbols palette: Del and cross-product operators
Context Panel: Simplify≻Simplify
Context Panel: Assign to a Name≻curlG
∇×G = ρ⁢cos⁡φ⁢−ρ⁢sin⁡φ⁢sin⁡θ2−ρ⁢cos⁡φ⁢cos⁡θ+ρ⁢sin⁡φ⁢−ρ⁢cos⁡φ⁢sin⁡θ2+ρ⁢sin⁡φ⁢cos⁡θ−ρ⁢ρ⁢sin⁡φ⁢cos⁡θ2⁢cos⁡φ−ρ⁢sin⁡φ⁢sin⁡θ2⁢cos⁡φ−ρ⁢sin⁡φ2⁢sin⁡θ−ρ⁢cos⁡φ2⁢cos⁡θρ2⁢sin⁡φρ⁢sin⁡φ2⁢cos⁡θ2−ρ⁢sin⁡φ2⁢sin⁡θ2+ρ⁢cos⁡φ⁢sin⁡θ⁢sin⁡φ−ρ⁢sin⁡φ⁢cos⁡θ⁢cos⁡φ−sin⁡φ⁢−ρ⁢sin⁡φ⁢sin⁡θ2−ρ⁢cos⁡φ⁢cos⁡θ−ρ⁢sin⁡φ⁢−sin⁡φ⁢sin⁡θ2−cos⁡φ⁢cos⁡θρ⁢sin⁡φ−ρ⁢sin⁡φ⁢sin⁡θ⁢cos⁡θ⁢cos⁡φ+ρ⁢sin⁡φ⁢sin⁡θ⁢cos⁡θ⁢cos⁡φ+sin⁡φ2⁢cos⁡θ−cos⁡φ2⁢sin⁡θ+ρ⁢cos⁡φ2⁢cos⁡θ−ρ⁢sin⁡φ2⁢sin⁡θρ= simplify cos⁡θ+sin⁡θ⁢sin⁡φ−cos⁡φcos⁡θ+sin⁡θ⁢cos⁡φ+sin⁡φ−sin⁡θ+cos⁡θ→assign to a namecurlG
Change the coordinates in ∇×G back to Cartesian
Write the name curlG. Context Panel: Evaluate and Display Inline
curlG = cos⁡θ+sin⁡θ⁢sin⁡φ−cos⁡φcos⁡θ+sin⁡θ⁢cos⁡φ+sin⁡φ−sin⁡θ+cos⁡θ→change coordinatesxx2+y2+yx2+y2⁢x2+y2x2+y2+z2−zx2+y2+z2⁢xx2+y2+z2+xx2+y2+yx2+y2⁢zx2+y2+z2+x2+y2x2+y2+z2⁢x⁢zx2+y2⁢x2+y2+z2−−yx2+y2+xx2+y2⁢yx2+y2xx2+y2+yx2+y2⁢x2+y2x2+y2+z2−zx2+y2+z2⁢yx2+y2+z2+xx2+y2+yx2+y2⁢zx2+y2+z2+x2+y2x2+y2+z2⁢y⁢zx2+y2⁢x2+y2+z2+−yx2+y2+xx2+y2⁢xx2+y2xx2+y2+yx2+y2⁢x2+y2x2+y2+z2−zx2+y2+z2⁢zx2+y2+z2+xx2+y2+yx2+y2⁢zx2+y2+z2+x2+y2x2+y2+z2⁢−x2−y2x2+y2⁢x2+y2+z2= simplify
Maple Solution - Coded
Load the Student VectorCalculus package and execute the BasisFormat command.
withStudent:-VectorCalculus:BasisFormatfalse:
Define the vector field F
Invoke the VectorField command.
F≔VectorFieldy,−z,−x:
Apply the Curl command.
CurlF =
Apply the MapToBasis command to change F to spherical coordinates
G≔MapToBasisF,sphericalρ,φ,θ
Obtain the curl of G, that is the curl of F in spherical coordinates
Apply the Curl and simplify commands.
curlG≔simplifyCurlG
Restore Cartesian coordinates in ∇×G
Apply the simplify command to the result of applying the MapToBasis command to the curl of G.
simplifyMapToBasiscurlG,cartesianx,y,z
<< Previous Example Section 9.3 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document