Chapter 9: Vector Calculus
Section 9.3: Differential Operators
Example 9.3.15
Derive the expression for the Laplacian in polar coordinates.
Solution
Mathematical Solution
If r=x2+y2 and θ=arctany/x, then Table 9.3.15(a) lists the various derivatives of r and
Table 9.3.15(a) lists the various derivatives of r=x2+y2 and θ=arctany/x that arise from applying the chain rule to Fr,θ=Frx,y,θx,y=fx,y when obtaining fxx+fyy.
rx=xr
θx=−y/x21+y/x2=−yx2+y2=−yr2
ry=yr
θy=1/x1+y/x2=xx2+y2=xr2
rxx=r−xx/rr2=r2−x2r3=y2r3
θxx=2 y r−3x/r=2 x yr4
ryy=r−yy/rr2=r2−y2r3=x2r3
θyy=−2 x r−3y/r=−2 x yr4
Table 9.3.15(a) Derivatives of r and θ
Table 9.3.15(b) lists the derivatives fx and fy in terms of derivatives of Fr,θ.
fx=Fr rx+Fθ θx
fy=Fr ry+Fθ θy
Table 9.3.15(b) First partials by chain rule
Table 9.3.15(c) lists in terms of derivatives of Fr,θ, the second partials: fxx and fyy.
fxx=Frr rx+Frθ θx rx+fr rxx+Fθrrx+Fθθ θx θx+Fθ θxx
fyy=Frr ry+Frθ θy ry+fr ryy+Fθrry+Fθθ θy θy+Fθ θyy
Table 9.3.15(c) Second partials by chain rule
Assuming sufficient continuity for equality of the mixed partials, the sum fxx+fyy becomes
fxx+fyy
=Frr rx2+ry2+2 Frθ rx θx+ry θy+Fθθ θx2+θy2+Fr Rxx+ryy+Fθ θxx+θyy
=Frr x2r2+y2r2+2 Frθ −x yr3+x yr3+Fθθ y2r4+x2r4+Fr x2r3+y2r3+Fθ 2 x yr4−2 x yr4
=Frr r2r2+2 Frθ 0+Fθθ r2r4+Fr r2r3+Fθ 0
=Frr+Fθθ/r2+Fr/r
Maple Solution - Interactive
Define fx,y=Fr,θ=Fx2+y2,arctany,x
Context Panel: Assign to a Name≻f
Fx2+y2,arctany,x→assign to a namef
Obtain and simplify fxx+fyy
Calculus palette: Second-partial operator Press the Enter key.
Context Panel: Simplify≻Simplify
Context Panel: Assign to a Name≻Temp
∂2∂x2 f+∂2∂y2 f
D1,1⁡F⁡x2+y2,arctan⁡y,x⁢xx2+y2−D1,2⁡F⁡x2+y2,arctan⁡y,x⁢yx2⁢1+y2x2⁢xx2+y2−D1⁡F⁡x2+y2,arctan⁡y,x⁢x2x2+y23/2+2⁢D1⁡F⁡x2+y2,arctan⁡y,xx2+y2−D1,2⁡F⁡x2+y2,arctan⁡y,x⁢xx2+y2−D2,2⁡F⁡x2+y2,arctan⁡y,x⁢yx2⁢1+y2x2⁢yx2⁢1+y2x2+2⁢D2⁡F⁡x2+y2,arctan⁡y,x⁢yx3⁢1+y2x2−2⁢D2⁡F⁡x2+y2,arctan⁡y,x⁢y3x5⁢1+y2x22+D1,1⁡F⁡x2+y2,arctan⁡y,x⁢yx2+y2+D1,2⁡F⁡x2+y2,arctan⁡y,xx⁢1+y2x2⁢yx2+y2−D1⁡F⁡x2+y2,arctan⁡y,x⁢y2x2+y23/2+D1,2⁡F⁡x2+y2,arctan⁡y,x⁢yx2+y2+D2,2⁡F⁡x2+y2,arctan⁡y,xx⁢1+y2x2x⁢1+y2x2−2⁢D2⁡F⁡x2+y2,arctan⁡y,x⁢yx3⁢1+y2x22
= simplify
D1,1⁡F⁡x2+y2,arctan⁡y,x⁢x2⁢x2+y2+D1,1⁡F⁡x2+y2,arctan⁡y,x⁢x2+y2⁢y2+D1⁡F⁡x2+y2,arctan⁡y,x⁢x2+D1⁡F⁡x2+y2,arctan⁡y,x⁢y2+D2,2⁡F⁡x2+y2,arctan⁡y,x⁢x2+y2x2+y23/2
→assign to a name
Temp
Replace Cartesian coordinates with polar coordinates and simplify
Expression palette: Evaluation template Press the Enter key.
Context Panel: Simplify≻Assuming Positive
Context Panel: Simplify≻Assuming Real Range (Complete dialog as per figure on the right.)
Context Panel: Conversions≻to diff notation
Context Panel: Expand≻Expand
Tempx=a|f(x)x=r cosθ,y=r sinθ
D1,1⁡F⁡r2⁢cos⁡θ2+r2⁢sin⁡θ2,arctan⁡r⁢sin⁡θ,r⁢cos⁡θ⁢r2⁢cos⁡θ2⁢r2⁢cos⁡θ2+r2⁢sin⁡θ2+D1,1⁡F⁡r2⁢cos⁡θ2+r2⁢sin⁡θ2,arctan⁡r⁢sin⁡θ,r⁢cos⁡θ⁢r2⁢cos⁡θ2+r2⁢sin⁡θ2⁢r2⁢sin⁡θ2+D1⁡F⁡r2⁢cos⁡θ2+r2⁢sin⁡θ2,arctan⁡r⁢sin⁡θ,r⁢cos⁡θ⁢r2⁢cos⁡θ2+D1⁡F⁡r2⁢cos⁡θ2+r2⁢sin⁡θ2,arctan⁡r⁢sin⁡θ,r⁢cos⁡θ⁢r2⁢sin⁡θ2+D2,2⁡F⁡r2⁢cos⁡θ2+r2⁢sin⁡θ2,arctan⁡r⁢sin⁡θ,r⁢cos⁡θ⁢r2⁢cos⁡θ2+r2⁢sin⁡θ2r2⁢cos⁡θ2+r2⁢sin⁡θ23/2
→assuming positive
D1,1⁡F⁡r,arctan⁡sin⁡θ,cos⁡θ⁢r2+D1⁡F⁡r,arctan⁡sin⁡θ,cos⁡θ⁢r+D2,2⁡F⁡r,arctan⁡sin⁡θ,cos⁡θr2
→assuming real range
D1,1⁡F⁡r,θ⁢r2+D1⁡F⁡r,θ⁢r+D2,2⁡F⁡r,θr2
→to diff
∂2∂r2⁢F⁡r,θ⁢r2+∂∂r⁢F⁡r,θ⁢r+∂2∂θ2⁢F⁡r,θr2
= expand
∂2∂r2⁢F⁡r,θ+∂∂r⁢F⁡r,θr+∂2∂θ2⁢F⁡r,θr2
Maple Solution - Coded
f≔Fx2+y2,arctany,x:
Use diff to calculate fxx+fyy and apply simplify
q1≔simplifydifff,x,x+difff,y,y
Use eval to replace Cartesian with polar coordinates and apply simplify
q2≔simplifyevalq1,x=r cosθ,y=r sinθ assuming r>0,θ∷RealRangeOpen−π,π
Use the convert command to change the differential-operator notation to partial-derivative notation, and use expand to split into separate terms
expandconvertq2,diff
<< Previous Example Section 9.3 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document