Chapter 9: Vector Calculus
Section 9.3: Differential Operators
Example 9.3.9
Change the Cartesian vector field F=x y i−y z j−x z k to cylindrical coordinates and obtain its curl in those coordinates. Then express the result in Cartesian coordinates and compare to the result in Example 9.3.8.
Solution
Mathematical Solution
An extension of the results in Example 9.2.9 gives
i=cosθ er−sinθ eθ
j=sinθ er+cosθ eθ
k=ez
and
er=cosθ i+sinθ j
eθ=−sinθ i+cosθ j
ez=k
so that the cylindrical form of F becomes
G
=r2cosθsinθ cos(θ)−sin(θ)0−r sinθ zsin(θ)cos(θ)0 −r cosθ z001
=r2⁢cos2θ⁢sin⁡θ−r sin2θ⁢z−r2⁢cos⁡θ⁢sin2θ−r⁢sin⁡θ⁢z⁢cos⁡θ−r⁢cos⁡θ⁢z
If the components of G are f,g, and h, then the three components of ∇×G are
hθ−r gz/r
=sin⁡θ⁢r⁢cos⁡θ+z
fz−hr
=cos2θ⁢r+cosθ⁢z−r
r gr−fθ/r
=−r cosθ
where subscripts denote partial derivatives and the differentiations and resulting algebraic simplifications are sufficiently tedious that they are suppressed.
The conversion of ∇×G back to Cartesian coordinates is accomplished as follows.
∇×G→
sin⁡θ⁢r⁢cos⁡θ+z er+cos2θ⁢r+cosθ⁢z−r eθ+−r cosθ ez
=yxx+zxr i+yr j+x2r+x zr−r −yr i+xr j−x k
=ir2x2y+x y z−x2y−x y z+y r2+jr2y2x+y2z+x3+x2z−x r2−x k
=ir2y r2+jr2y2x+r2z+x3−x x2+y2−x k
=y i+jr2r2z−x k
=y i+z j−x k
=yz−x
Maple Solution - Interactive
Initialize
Tools≻Load Package: Student Vector Calculus
Loading Student:-VectorCalculus
Tools≻Tasks≻Browse: Calculus - Vector≻ Vector Algebra and Settings≻ Display Format for Vectors
Press the Access Settings button and select "Display as Column Vector"
Display Format for Vectors
Define the Cartesian vector field F
Write the free vector whose components are those of F. Context Panel: Evaluate and Display Inline
Context Panel: Student Vector Calculus≻Conversions≻To Vector Field
Context Panel: Assign to a Name≻F
x y,−y z,−x z = x⁢y−y⁢z−x⁢z→to Vector Fieldx⁢y−y⁢z−x⁢z→assign to a nameF
Obtain the curl of F
Common Symbols palette: Del and cross-product operators.
Context Panel: Evaluate and Display Inline
∇×F = yz−x
Alternate calculation of the curl of F
Write the name F. Context Panel: Evaluate and Display Inline
Context Panel: Student Vector Calculus≻Curl
F = x⁢y−y⁢z−x⁢z→curlyz−x
Change F to cylindrical coordinates
Context Panel: Student Vector Calculus≻Conversions≻Change Co-ordinate System (Complete the "Specify coordinates" dialog as per figure to the right.)
Context Panel: Assign to a Name≻G
F = x⁢y−y⁢z−x⁢z→change coordinatesr2⁢cos⁡θ2⁢sin⁡θ−r⁢sin⁡θ2⁢z−r2⁢cos⁡θ⁢sin⁡θ2−r⁢sin⁡θ⁢z⁢cos⁡θ−r⁢cos⁡θ⁢z→assign to a nameG
Obtain the curl in spherical coordinates
Common Symbols palette: Del and cross-product operators
Context Panel: Simplify≻Simplify
Context Panel: Assign to a Name≻curlG
∇×G = sin⁡θ⁢r⁢z+r2⁢sin⁡θ⁢cos⁡θr−r⁢sin⁡θ2+cos⁡θ⁢zr2⁢cos⁡θ⁢sin⁡θ2+r⁢sin⁡θ⁢z⁢cos⁡θ+r⁢−2⁢sin⁡θ2⁢cos⁡θ⁢r−sin⁡θ⁢cos⁡θ⁢z−r2⁢cos⁡θ3r= simplify sin⁡θ⁢cos⁡θ⁢r+zcos⁡θ2⁢r+cos⁡θ⁢z−r−cos⁡θ⁢r→assign to a namecurlG
Change the coordinates in ∇×G back to Cartesian
Write the name curlG. Context Panel: Evaluate and Display Inline
curlG = sin⁡θ⁢cos⁡θ⁢r+zcos⁡θ2⁢r+cos⁡θ⁢z−r−cos⁡θ⁢r→change coordinatesy⁢x+z⁢xx2+y2−x2x2+y2+x⁢zx2+y2−x2+y2⁢yx2+y2y2⁢x+zx2+y2+x2x2+y2+x⁢zx2+y2−x2+y2⁢xx2+y2−x= simplify yz−x
Maple Solution - Coded
Load the Student VectorCalculus package and execute the BasisFormat command.
withStudent:-VectorCalculus:BasisFormatfalse:
Define the vector field F
Invoke the VectorField command.
F≔VectorFieldx y,−y z,−x z:
Obtain the curl of F in Cartesian coordinates
Apply the Curl command.
CurlF
yz−x
Change F to cylindrical coordinatesa
Apply the MapToBasis command.
G≔MapToBasisF,cylindricalr,θ,z
Obtain the curl of G, that is the curl of F in cylindrical coordinates
Apply the Curl and simplify commands.
curlG≔simplifyCurlG
Restore Cartesian coordinates in ∇×G
Apply the simplify command to the result of applying the MapToBasis command to the curl of G.
simplifyMapToBasiscurlG,cartesianx,y,z
<< Previous Example Section 9.3 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document