Chapter 9: Vector Calculus
Section 9.4: Differential Identities
Example 9.4.13
For sufficiently well-behaved vector fields F=u i+v j+w k and G=a i+b j+c k, where u,v,w and a,b,c are functions of x,y,z, verify Identity 8 in Table 9.4.1.
Solution
Mathematical Solution
Identity 8: ∇×F×G= G·∇F−F·∇G+F ∇·G−G ∇·F
Its left side is the curl of the cross product of F and G, so it is the vector
ijk∂x∂y∂zv c−w bw a−u cu b−v a
=∂y(u b−v a)−∂z(w a−u c)∂z(v c−w b)−∂x(u b−v a)∂x(w a−u c)−∂y(v c−w b)
=uyb+u by−vya−v ay−wza−w az+uzc+u czvzc+v cz−wzb−w bz−uxb−u bx+vxa+v axwxa+w ax−uxc−u cx−vyc−v cy+wyb+w by
The right side contains the scalar operators F·∇=u ∂x+v ∂y+w ∂z and G·∇=a ∂x+b ∂y+c ∂z that act componentwise on the vectors to which they are applied. In essence, they are directional derivatives of one vector field in the direction of another. As such, they can be implemented in Maple via the DirectionalDiff command in the Student VectorCalculus package.
The first two terms on the right are
G·∇F=(a ∂x+b ∂y+c ∂z)u(a ∂x+b ∂y+c ∂z)v(a ∂x+b ∂y+c ∂z)w = a ux+b uy+c uza vx+b vy+c vza wx+b wy+c wz
and the negative of
F·∇G=(u ∂x+v ∂y+w ∂z)a(u ∂x+v ∂y+w ∂z)b(u ∂x+v ∂y+w ∂z)c = u ax+v ay+w azu bx+v by+w bzu cx+v cy+w cz
The third term on the right, namely, F ∇·G, is the vector field F times the scalar "gradient of G."
The fourth term on the right, namely, −G ∇·F, is the negative of the vector field G times the gradient of G. Together, these two terms are
u (ax+by+cz)v (ax+by+cz)w (ax+by+cz)−a (ux+vy+wz)b (ux+vy+wz)c (ux+vy+wz) = u ax+u by+u cz−a ux−a vy−a wzv ax+v by+v cz−b ux−b vy−b wzw ax+w by+w cz−c ux−c vy−c wz
The sum of the terms on the right is then
a ux+b uy+c uza vx+b vy+c vza wx+b wy+c wz−u ax+v ay+w azu bx+v by+w bzu cx+v cy+w cz+u ax+u by+u cz−a ux−a vy−a wzv ax+v by+v cz−b ux−b vy−b wzw ax+w by+w cz−c ux−c vy−c wz
which simplifies to
∇×F×G=uyb+u by−vya−v ay−wza−w az+uzc+u czvzc+v cz−wzb−w bz−uxb−u bx+vxa+v axwxa+w ax−uxc−u cx−vyc−v cy+wyb+w by
Maple Solution
Initialize
Tools≻Load Package: Student Vector Calculus
Loading Student:-VectorCalculus
Tools≻Tasks≻Browse: Calculus - Vector≻ Vector Algebra and Settings≻ Display Format for Vectors
Press the Access Settings button and select "Display as Column Vector"
Display Format for Vectors
Additional notational devices
The Suppress command in the Typesetting package allows suppression of arguments on input, as well as on output.
The declare command in the PDEtools package suppresses arguments on output, and sets partial derivatives as subscripts. Because the Suppress command acts first, the arguments can be suppressed in the ensuing declare command.
Typesetting:-Suppressux,y,z,vx,y,z,wx,y,z,ax,y,z,bx,y,z,cx,y,z
PDEtools:-declareu,v,w,a b c,quiet
Define the vector fields F and G
Write the free vector whose components are those of F. Context Panel: Evaluate and Display Inline
Context Panel: Student Vector Calculus≻Conversions≻To Vector Field
Context Panel: Assign to a Name≻F (or G, as appropriate)
u,v,w = →to Vector Field →assign to a nameF
a,b,c = →to Vector Field →assign to a nameG
Implement the left side of Identity 4: ∇×F×G= G·∇F−F·∇G+F ∇·G−G ∇·F
Common Symbols palette: Del, and cross-product operators
Context Panel: Evaluate and Display Inline
∇×F×G =
Implement the right side of Identity 4: ∇×F×G= G·∇F−F·∇G+F ∇·G−G ∇·F
For the first two terms, be sure to enclose the argument of the operators in parentheses.
For the second two terms, use the Del and dot-product operators in the Common Symbols palette.
Apply the simplify command to the sum of the four terms.
simplifyG·∇F−F·∇G+F ∇·G−G ∇·F
<< Previous Example Section 9.4 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document