Chapter 9: Vector Calculus
Section 9.6: Surface Integrals
Example 9.6.1
Integrate the scalar fx,y,z=x y z on S, the surface of the rectangular parallelepiped (box) whose faces lie in the planes x=1,x=2,y=3,y=4,z=5,z=6.
Solution
Mathematical Solution
On the faces x=1 and x=2, dσ=dy dz.
On the faces y=3 and y=4, dσ=dx dz.
On the faces z=5 and z=6, dσ=dx dy.
On these faces,
f1,y,z=y z
f2,y,z=2 y z
fx,3,z=3 x z
fx,4,z=4 x z
fx,y,5=6 x y
fx,y,6=6 x y
Figure 9.6.1(a) Surface S
On pairs of parallel faces, the surface integrals of f are given by
∫34∫56f1,y,z dy dz+∫34∫56f2,y,z dy dz=∫34∫563 y z dy dz=231/4
∫12∫56fx,3,z dx dz+∫12∫56fx,4,z dx dz=∫12∫567 x z dx dz=231/4
∫12∫34fx,y,5 dx dy+∫12∫34fx,y,6 dx dy=∫12∫3411 x y dx dy=231/4
Consequently, ∫∫Sf dσ=693/4.
Maple Solution - Interactive
Table 9.6.1(a) provides a solution via task template. Notice Maple's use of the parameters s,t on all the faces.
Tools≻Tasks≻Browse Calculus - Vector≻Integration≻Surface Integration≻Over a Box
Surface Integral on a Box in ℝ3
Integrand
fx,y,z=
x1=≤x≤=x2
y1=≤y≤=y2
z1=≤z≤=z2
Table 9.6.1(a) Solution via task template
Of course, a solution can be constructed from first principles.
Define the function f
Context Panel: Assign Function
fx,y,z=x y z→assign as functionf
Write and evaluate the relevant surface integrals
Calculus palette: Double-integral template
Context Panel: 2-D Math≻Convert To≻Inert Form Press the Enter key.
Context Panel: Evaluate Integral
∫56∫34f1,y,z+f2,y,z ⅆy ⅆz+∫56∫12fx,3,z+fx,4,z ⅆx ⅆz+∫34∫12fx,y,5+fx,y,6 ⅆx ⅆy
∫56∫343⁢y⁢zⅆyⅆz+∫56∫127⁢x⁢zⅆxⅆz+∫34∫1211⁢x⁢yⅆxⅆy
=
6934
Maple Solution - Coded
What would otherwise be a tedious calculation of six double integrals, a solution obtained via Maple's SurfaceInt command is measurably simpler.
Install the Student VectorCalculus package.
withStudent:-VectorCalculus:
SurfaceIntx y z,x,y,z=Box1..2,3..4,5..6,output=integral
∫56∫343⁢s⁢tⅆsⅆt+∫56∫127⁢s⁢tⅆsⅆt+∫34∫1211⁢s⁢tⅆsⅆt
SurfaceIntx y z,x,y,z=Box1..2,3..4,5..6 = 6934
<< Chapter Overview Section 9.6 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document