Chapter 9: Vector Calculus
Section 9.6: Surface Integrals
Example 9.6.5
Integrate the scalar fx,y,z=x y z on the surface z=x2+y2 defined over the unit disk with center at x,y=2,3.
Solution
Mathematical Solution
In Cartesian coordinates where, except for the differentials in dA, the element of surface area is given by 1+zx2+zy2=1+4 x2+4 y2.
The disk above which the surface is defined is bounded by the circle whose Cartesian representation is
x−22+y−32=1
from which is obtained y±=3 ±1−x−22.
The requisite surface integral is then
∫13∫y−y+x y x2+y2 1+4 x2+4 y2 dy dx ≐ 2147.26
Alternatively, a solution is obtained by the parametrization
xr,θ=2+r cosθ,yr,θ=3+r sinθ,zr,θ=x2r,θ+y2r,θ
Define the surface by the position vector R=xr,θ i+yr,θ j+zr,θ k so that, except for the differentials in dA, the element of surface area becomes
Rr×Rθ= r⁢4⁢r2+16⁢r⁢cosθ+24⁢r⁢sinθ+53
because
Rr×Rθ=cos(θ)sin(θ)2⁢r+4⁢cos⁡t+6⁢sin⁡t×−r⁢sin⁡θr⁢cos⁡θ2⁢r⁢3⁢cos⁡θ−2⁢sin⁡θ=−2⁢r⁢2+r⁢cos⁡θ−2⁢r⁢3+r⁢sin⁡θr
∫01∫02 π2+r cosθ 3+r sinθ 2+r cosθ2+3+r sinθ2 r⁢4⁢r2+16⁢r⁢cosθ+24⁢r⁢sinθ+53 dθ dr
with numeric value approximately 2147.26.
Maple Solution - Interactive
Table 9.6.5(a) provides a solution via task template.
Tools≻Tasks≻Browse: Calculus - Vector≻Integration≻Surface Integration≻Surface Defined over a Disk
Surface Integral on a Surface Defined over a Disk
Integrand
fx,y,z=
Surface
zx,y=
Center h,k:
h=
k=
Radius:
r=
From θ= to θ=
Table 9.6.5(a) Solution via task template
Table 9.6.5(b) contains a solution from first principles where Cartesian coordinates are used. Note that Maple's solution in Table 9.6.5(a) uses polar coordinates. Table 9.6.5(b) provides this same solution constructed from first principles. Anticipating that the surface integral has no closed-form solution, the integral is converted to its inert form so that numeric integration can be applied.
Initialize
Tools≻Load Package: Student Vector Calculus
Loading Student:-VectorCalculus
Tools≻Tasks≻Browse: Calculus - Vector≻ Vector Algebra and Settings≻ Display Format for Vectors
Press the Access Settings button and select "Display as Column Vector"
Display Format for Vectors
Context Panel: Assign Function
fx,y,z=x y z→assign as functionf
Define the surface as a position vector R
Context Panel: Assign to a Name≻X,Y,Z (as appropriate)
2+r cosθ→assign to a nameX
3+r sinθ→assign to a nameY
X2+Y2→assign to a nameZ
Context Panel: Assign to a Name≻R
X,Y,Z→assign to a nameR
Obtain Rr×Rθ
Calculus Palette: Partial derivative operator Common Symbols palette: Cross-product operator Press the Enter key.
Context Panel: Evaluate and Display Inline Context Panel: Simplify≻Simplify
Context Panel: Student Vector Calculus≻Norm≻Euclidean
Context Panel: Simplify≻Assuming Positive
Context Panel: Assign to a Name≻dsig
∂∂ r R×∂∂ θ R
sin⁡θ⁢−2⁢2+r⁢cos⁡θ⁢r⁢sin⁡θ+2⁢3+r⁢sin⁡θ⁢r⁢cos⁡θ−2⁢2+r⁢cos⁡θ⁢cos⁡θ+2⁢3+r⁢sin⁡θ⁢sin⁡θ⁢r⁢cos⁡θ−cos⁡θ⁢−2⁢2+r⁢cos⁡θ⁢r⁢sin⁡θ+2⁢3+r⁢sin⁡θ⁢r⁢cos⁡θ−2⁢2+r⁢cos⁡θ⁢cos⁡θ+2⁢3+r⁢sin⁡θ⁢sin⁡θ⁢r⁢sin⁡θcos⁡θ2⁢r+sin⁡θ2⁢r
= simplify
−2⁢r⁢2+r⁢cos⁡θ−2⁢r⁢3+r⁢sin⁡θr
→2-norm
r2⁢4⁢r2+16⁢r⁢cos⁡θ+24⁢r⁢sin⁡θ+53
→assuming positive
r⁢4⁢r2+16⁢r⁢cos⁡θ+24⁢r⁢sin⁡θ+53
→assign to a name
dsig
Form and evaluate the appropriate surface integral
Calculus palette: Iterated double-integral template Context Panel: 2-D Math≻Convert To≻Inert Form
Context Panel: Approximate≻10 (digits)
∫01∫02 πfX,Y,Z dsig ⅆθ ⅆr→at 10 digits2147.256852
Table 9.6.5(b) Solution from first principles
Table 9.6.5(c) gives a solution in Cartesian coordinates where, except for the differentials in dA, the element of surface area is given by 1+zx2+zy2=1+4 x2+4 y2.
Obtain the Cartesian representation of the bounding circle
Context Panel: Solve≻Obtain Solutions for≻y
Context Panel: Assign to a Name≻C
x−22+y−32=1→solutions for y3+−x2+4⁢x−3,3−−x2+4⁢x−3→assign to a nameC
Form and evaluate the relevant surface integral
Calculus palette: Iterated double-integral template
Context Panel: 2-D Math≻Convert To≻Inert Form
Context Panel: Apply a Command≻evalf
∫13∫C2C1fx,y,x2+y2 1+4 x2+4 y2 ⅆy ⅆx→2147.256851
Table 9.6.5(c) From first principles, a solution in Cartesian coordinates
A regression in Maple 2020 forces the use of the evalf command rather than the Approximate option in the Context Panel. Surprisingly, the iterated integral in Table 9.6.5(b) triggers the Approximate option in the Context Panel!
Maple Solution - Coded
Table 9.6.5(d) contains a solution based on the SurfaceInt command in the Student VectorCalculus package.
Install the Student VectorCalculus package.
withStudent:-VectorCalculus:
Use the SurfaceInt command to return the inert integral Apply the evalf command to evaluate the integral numerically
q≔SurfaceIntx y z,x,y,z=Surfacex,y,x2+y2,x,y=Circle2,3,1,r,θ,output=integral; evalfq
∫01∫02⁢π−r⁢4⁢r2+16⁢r⁢cos⁡θ+24⁢r⁢sin⁡θ+53⁢r⁢cos⁡θ+2⁢6⁢cos⁡θ2⁢r2−4⁢cos⁡θ⁢sin⁡θ⁢r2−sin⁡θ⁢r3−12⁢r⁢cos⁡θ−31⁢r⁢sin⁡θ−9⁢r2−39ⅆθⅆr
Table 9.6.5(d) Solution via the SurfaceInt command
<< Previous Example Section 9.6 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document