Chapter 9: Vector Calculus
Section 9.6: Surface Integrals
Example 9.6.6
Integrate the scalar fx,y,z=x y z on the surface z=x2+y2 defined over the rectangle whose edges lie in the lines x=1,x=2,y=1,y=3.
Solution
Mathematical Solution
The element of surface area is 1+zx2+zy2 dA = 1+4 x2+4 y2 dA, where dA is either dy dx or dx dy. The requisite surface integral is then
∫12∫13x y x2+y2 1+4 x2+4 y2 dy dx
=81112−14740⁢21−487491680⁢41+53371840⁢53
≐260.64
Maple Solution - Interactive
Table 9.6.6(a) provides a solution via task template.
Tools≻Tasks≻Browse: Calculus - Vector≻Integration≻Surface Integration≻Surface Defined over a Rectangle
Surface Integral on a Surface Defined over a Rectangle
Integrand
fx,y,z=
Surface
Rectangle
zx,y=
x2=
y2=
x1=
y1=
Table 9.6.6(a) Solution by task template
Maple Solution - Coded
Table 9.6.6(b) provides a solution via the SurfaceInt command in the Student VectorCalculus package.
Initialize
Install the Student VectorCalculus package.
withStudent:-VectorCalculus:
Implement the SurfaceInt command
SurfaceIntx y z,x,y,z=Surfacex,y,x2+y2,x,y=Rectangle1..2,1..3,output=integral
∫13∫12x⁢y⁢x2+y2⁢4⁢x2+4⁢y2+1ⅆxⅆy
SurfaceIntx y z,x,y,z=Surfacex,y,x2+y2,x,y=Rectangle1..2,1..3
81112−14740⁢21−487491680⁢41+53371840⁢53
Table 9.6.6(b) Solution via the SurfaceInt command
<< Previous Example Section 9.6 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document