Chapter 9: Vector Calculus
Section 9.6: Surface Integrals
Example 9.6.8
Integrate the scalar fx,y,z=x y z on the surface z=x2+y2 defined over the triangle whose vertices, A,B,C, are respectively 1,2, 5,1, and 3,3.
Solution
Mathematical Solution
Figure 9.6.8(a) is a sketch of the triangle determined by the given vertices, labeled A,B,C. The equations of the edges are designated YAB,YBC,YCA, with color-coding matching the colors (black, red, green) used for the edges themselves.
Since 1+zx2+zy2=1+4 x2+4 y2, the integrand of the surface integral is
F=x y x2+y2 1+4 x2+4 y2
so the surface integral itself is given by the sum
∫13∫YABYCAF dy dx+∫35∫YABYBCF dy dx
Figure 9.6.8(a) Triangle and A,B,C
An exact value for this sum of integrals exists, but it is so cumbersome that it just has to be converted to the floating-point equivalent of approximately 2032.78.
Maple Solution - Interactive
Table 9.6.8(a) provides a solution via task template. There is an exact value for the surface integral, but it is complicated enough to be of almost no practical value. The integral in Table 9.6.8(a) is evaluated numerically.
Tools≻Tasks≻Browse: Calculus - Vector≻Integration≻Surface Integration≻Surface Defined over a Triangle
Surface Integral on a Surface Defined over a Triangle
Integrand
fx,y,z=
Surface
zx,y=
Triangle
Vertices
x1=
x2=
x3=
y1=
y2=
y3=
Table 9.6.8(a) Solution by task template
Table 9.6.8(b) contains a solution from first principles. The equations of the lines forming the edges of the triangle are obtained by interactively accessing the Line command in the Student Precalculus package.
Initialize
Tools≻Load Package: Student Precalculus
Loading Student:-Precalculus
Obtain the equations of the edges of the triangle
Context Panel: Student Precalculus≻Lines And Segments≻Line≻Equation
Context Panel: Right-hand Side
Context Panel: Assign to a Name≻Y[AB], Y[BC], Y[CA], as appropriate
1,2,5,1→equation of liney=−14⁢x+94→right hand side−14⁢x+94→assign to a nameYAB
5,1,3,3→equation of liney=−x+6→right hand side−x+6→assign to a nameYBC
3,3,1,2→equation of liney=12⁢x+32→right hand side12⁢x+32→assign to a nameYCA
Write the integrand of the surface integral
Context Panel: Assign to a Name≻F
x y x2+y2 1+4 x2+4 y2→assign to a nameF
Write and evaluate the surface integral
Calculus palette: Iterated double-integral template Press the Enter key.
Context Panel: Approximate≻10 (digits)
∫13∫YABYCAF ⅆy ⅆx+∫35∫YABYBCF ⅆy ⅆx
1146089637417605000⁢21+321284403181741696⁢17⁢ln⁡4⁢341+17⁢21⁢341+156333800000⁢5⁢ln⁡8⁢41+5⁢21⁢41−553057088871122522240⁢46−321284403181741696⁢17⁢ln⁡21⁢341+17⁢46⁢341+13148711560000⁢73−156333800000⁢5⁢ln⁡18⁢41+5⁢41⁢73+553057088871122522240⁢2⁢23+321284403181741696⁢17⁢ln⁡21⁢341+17⁢2⁢23⁢341+89206702510690688⁢105−321284403181741696⁢17⁢ln⁡38⁢341+17⁢105⁢341−11350771024⁢2⁢ln⁡73+11350771024⁢2⁢ln⁡8⁢73⁢2+2⁢73⁢105−11350771024⁢2⁢ln⁡2
→at 10 digits
2032.782670
Table 9.6.8(b) Solution from first principles
Maple Solution - Coded
Table 9.6.8(c) provides a solution based on the SurfaceInt command in the Student VectorCalculus package.
Install the Student VectorCalculus package.
withStudent:-VectorCalculus:
Implement the SurfaceInt command with the Triangle option
SurfaceIntx y z,x,y,z=Surfacex,y,x2+y2,x,y=Triangle1,2,5,1,3,3,output=integral
−∫13∫32+12⁢x94−14⁢xx⁢y⁢x2+y2⁢4⁢x2+4⁢y2+1ⅆyⅆx−∫35∫6−x94−14⁢xx⁢y⁢x2+y2⁢4⁢x2+4⁢y2+1ⅆyⅆx
q≔SurfaceIntx y z,x,y,z=Surfacex,y,x2+y2,x,y=Triangle1,2,5,1,3,3
1146089637417605000⁢21+156333800000⁢5⁢ln⁡8⁢41+5⁢21⁢41+321284403181741696⁢17⁢ln⁡4⁢341+17⁢21⁢341+13148711560000⁢73−156333800000⁢5⁢ln⁡18⁢41+5⁢41⁢73−553057088871122522240⁢46−321284403181741696⁢17⁢ln⁡21⁢341+17⁢46⁢341+553057088871122522240⁢2⁢23+321284403181741696⁢17⁢ln⁡21⁢341+17⁢2⁢23⁢341+89206702510690688⁢105−11350771024⁢2⁢ln⁡73−11350771024⁢2⁢ln⁡2+11350771024⁢2⁢ln⁡8⁢73⁢2+2⁢73⁢105−321284403181741696⁢17⁢ln⁡38⁢341+17⁢105⁢341
Convert the exact answer to floating-point form with the evalf command.
evalfq = 2032.782670
Table 9.6.8(c) Solution via the SurfaceInt command
Table 9.6.8(d) provides a solution from first principles. The most tedious part of the solution is determining the equations of the three edges of the triangle. For this, the Line command in the Student Precalculus package is used.
Define F, the integrand of the surface integral
F≔x y x2+y2 1+4 x2+4 y2:
Install the Student MultivariateCalculus package.
Loading Student:-MultivariateCalculus
Install the Student Precalculus package.
withStudent:-Precalculus:
Define the points A,B,C.
A,B,C≔1,2,5,1,3,3:
Use the Line command from the Student Precalculus package to obtain equations of the form y=…
Apply the rhs command to obtain the right-hand sides of the resulting equations.
YAB≔rhsLineA,B1
−14⁢x+94
YBC≔rhsLineB,C1
−x+6
YCA≔rhsLineC,A1
12⁢x+32
MultiIntF,y=YAB..YCA,x=1..3,output=integral+MultiIntF,y=YAB..YBC,x=3..5,output=integral
∫13∫−14⁢x+9412⁢x+32x⁢y⁢x2+y2⁢4⁢x2+4⁢y2+1ⅆyⅆx+∫35∫−14⁢x+94−x+6x⁢y⁢x2+y2⁢4⁢x2+4⁢y2+1ⅆyⅆx
MultiIntF,y=YAB..YCA,x=1..3+MultiIntF,y=YAB..YBC,x=3..5
1146089637417605000⁢21+156333800000⁢5⁢ln⁡8⁢41+5⁢21⁢41+321284403181741696⁢17⁢ln⁡4⁢341+17⁢21⁢341+13148711560000⁢73−156333800000⁢5⁢ln⁡18⁢41+5⁢41⁢73−553057088871122522240⁢46−321284403181741696⁢17⁢ln⁡21⁢341+17⁢46⁢341+553057088871122522240⁢2⁢23+321284403181741696⁢17⁢ln⁡21⁢341+17⁢2⁢23⁢341+89206702510690688⁢105−11350771024⁢2⁢ln⁡73−11350771024⁢2⁢ln⁡2+11350771024⁢2⁢ln⁡8⁢2⁢73+2⁢105⁢73−321284403181741696⁢17⁢ln⁡38⁢341+17⁢105⁢341
MultiIntF,y=YAB..YCA,x=1..3.0+MultiIntF,y=YAB..YBC,x=3..5.0
Table 9.6.8(d) Solution from first principles
<< Previous Example Section 9.6 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document