Chapter 9: Vector Calculus
Section 9.9: Stokes' Theorem
Example 9.9.6
Apply Stokes' theorem to the vector field F=x2 y i+y z j+x z k; the curve C, the ellipse x2+4 y2=1; and the upper half of the ellipsoid x2+4 y2+6 z2=1 as the capping surface S.
Solution
Mathematical Solution
Begin by calculating
∇×F=ijk∂x∂y∂zx2 yy zx z = −y−z−x2
Express S as z=1−x2−4 y2/6 and obtain dσ=1+zx2+zy2 dA as
dσ=1+x2−6⁢x2−24⁢y2+6+16⁢y2−6⁢x2−24⁢y2+6 dA=165⁢x2+8⁢y2−6x2+4⁢y2−1 dA
An upward normal on S is given by −zx−zy1 = x−6⁢x2−24⁢y2+64⁢y−6⁢x2−24⁢y2+61. Normalized, this is
N=65⁢x2+8⁢y2−6x2+4⁢y2−1⁢x⁢−6⁢x2−24⁢y2+64⁢y⁢−6⁢x2−24⁢y2+61
Now N dσ= x−6⁢x2−24⁢y2+64⁢y−6⁢x2−24⁢y2+61 dA and
∇×F·N dσ=−y⁢x−6⁢x2−24⁢y2+6−4⁢z⁢y−6⁢x2−24⁢y2+6−x2 dA
On S, where z=zx,y, this becomes
−y⁢x−6⁢x2−24⁢y2+6−23⁢y−x2 dA
To integrate this over the interior of C, express C in polar coordinates by the calculation
r cosθ2+4r sinθ2=1
from which it follows that r=rθ=1/cos2θ+4 sin2θ≡E. Change to polar coordinates to obtain for ∫∫S∇×F·N dσ the integral
∫02 π∫0E−r r2⁢sin⁡t⁢cos⁡t−6⁢r2⁢cos⁡t2−24⁢r2⁢sin⁡t2+6+23⁢r⁢sint+r2⁢cos⁡t2 dr dθ=−π8
To obtain ∳CF·dr, note that if r=x i+y j+0 k, then F·dr=x2y dx+y z dy, which, in the plane z=0, becomes just x2y dx. Taking y=±1−x2/2 to describe the ellipse C leads to the line integral
∳CF·dr = ∫1−1x21−x2/2 dx−∫−11x21−x2/2 dx=−π8
Maple Solution - Interactive
Initialize
Tools≻Load Package: Student Vector Calculus
Loading Student:-VectorCalculus
Tools≻Tasks≻Browse: Calculus - Vector≻ Vector Algebra and Settings≻ Display Format for Vectors
Press the Access Settings button and select "Display as Column Vector"
Display Format for Vectors
Obtain z=zx,y
Control-drag the equation of the plane.
Context Panel: Solve≻Obtain Solutions for≻z
Context Panel: Assign to a Name≻Z
x2+4 y2+6 z2=1→solutions for z16⁢−6⁢x2−24⁢y2+6,−16⁢−6⁢x2−24⁢y2+6→assign to a nameZ
Define the vector field F
Enter a free vector whose components are those of F. Context Panel: Evaluate and Display Inline
Context Panel: Student Vector Calculus≻Conversions≻To Vector Field
Context Panel: Assign to a Name≻F
x2y,y z,x z = →to Vector Field →assign to a nameF
Obtain ∇×F
Common Symbols palette: Del and cross-product operators
Context Panel: Evaluate and Display Inline
∇×F =
To evaluate ∫∫S∇×F·N dσ, use the task template in Table 9.9.6(b). Should the "Clear All and Reset" button in the Task Template be pressed, all the data that has been input to the template will be lost. In that event, the reader should simply re-launch the example to recover the appropriate inputs to the template.
Tools≻Tasks≻Browse: Calculus - Vector≻Integration≻Flux≻3-D≻Through a Surface Defined over an Ellipse
Flux through a Surface Defined over Interior of an Ellipse
For the Vector Field:
Select Coordinate SystemCartesian [x,y,z]Cartesian - othercylindricalsphericalbipolarcylindricalbisphericalcardioidalcardioidcylindricalcasscylindricalconicalellcylindricalhypercylindricalinvcasscylindricallogcylindricallogcoshcylindricaloblatespheroidalparaboloidalparacylindricalprolatespheroidalrosecylindricalsixspheretangentcylindricaltangentspheretoroidal
Table 9.9.6(b) Task template used to evaluate ∫∫S∇×F·N dσ
Table 9.9.6(c) accesses the LineInt command through the Context Panel. Express the ellipse C in polar coordinates r and t and give the resulting expression for rt the name E. (See the Mathematical Solution for a derivation of the expression rt.)
Form and evaluate the line integral of F around C
Context Panel: Assign to a Name
1/cos2t+4 sin2t→assign to a nameE
Write the name F. Context Panel: Evaluate and Display Inline
Context Panel: Student Vector Calculus≻Line Integral (Complete the dialog as per Figure 9.9.6(a).)
Context Panel: Evaluate Integral
Figure 9.9.6(a) Line Integral Domain dialog
F = →line integral∫02⁢π−4⁢cos⁡t2⁢sin⁡t2cos⁡t2+4⁢sin⁡t23/2⁢−3⁢cos⁡t2+43/2ⅆt=−18⁢π
Table 9.9.6(c) Evaluation of the line integral of F around C
Maple Solution - Coded
Install the Student VectorCalculus package.
withStudent:-VectorCalculus:
Set display of vectors with BasisFormat command.
BasisFormatfalse:
Define F with the VectorField command.
F≔VectorFieldx2 y,y z,x z:
Use the Curl and Flux commands to obtain the flux of ∇×F through S1
FluxCurlF,Surfacex,y,Z1,x,y=Ellipsex2+4 y2=1,r,t,output=integral
∫02⁢π∫012⁢tan⁡t2+114+tan⁡t2−r2⁢sin⁡t⁢cos⁡t−6⁢r2⁢cos⁡t2−24⁢r2⁢sin⁡t2+6−23⁢r⁢sin⁡t−r2⁢cos⁡t2⁢rⅆrⅆt
FluxCurlF,Surfacex,y,Z1,x,y=Ellipsex2+4 y2=1,r,t = −18⁢π
Table 9.9.6(d) uses the LineInt command to obtain the value of ∳CF·dr, where C is the ellipse x2+4 y2=1. In polar coordinates, this ellipse is given by rθ=1/cos2θ+4 sin2θ. (See the Mathematical Solution for a derivation of this expression for rθ.)
LineIntF,Path1/cos2θ+4 sin2θ,θ,0,θ=0..2 π,coords=cylindricalr,θ,z,output=integral
∫02⁢π−4⁢cos⁡θ2⁢sin⁡θ2cos⁡θ2+4⁢sin⁡θ23/2⁢−3⁢cos⁡θ2+43/2ⅆθ
LineIntF,Path1/cos2θ+4 sin2θ,θ,0,θ=0..2 π,coords=cylindricalr,θ,z
−18⁢π
Table 9.9.6(d) Line integral of the tangential component of F around C
<< Previous Example Section 9.9 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document