SumTools[Hypergeometric]
RationalCanonicalForm
construct four rational canonical forms of a rational function
Calling Sequence
Parameters
Description
Examples
References
RationalCanonicalForm[1](F, n)
RationalCanonicalForm[2](F, n)
RationalCanonicalForm[3](F, n)
RationalCanonicalForm[4](F, n)
F
-
rational function of n
n
variable
Let F be a rational function of n over a field K of characteristic 0. The RationalCanonicalForm[i](F,n) calling sequence constructs the ith rational canonical forms for F, i=1,2,3,4.
If the RationalCanonicalForm command is called without an index, the first rational canonical form is constructed.
The output is a sequence of 5 elements z,r,s,u,v, called RNF⁡F, where z is an element of K, and r,s,u,v are monic polynomials over K such that:
F=z⁢r⁢E⁡uv⁢vs⁢u.
gcd⁡r,Ek⁡s=1 for all integers k.
gcd⁡r,u·E⁡v=1, gcd⁡s,E⁡u·v=1.
Note: E is the automorphism of K(n) defined by E⁡F⁡n=F⁡n+1.
The five-tuple z,r,s,u,v that satisfies the three conditions is a strict rational normal form for F. The rational functions z⁢rs and uv are called the kernel and the shell of an RNF⁡F, respectively.
Let φ=z,r,s,u,v be any RNF of a rational function F. Then the degrees of the polynomials r and s are unique, and have minimal possible values in the sense that if F⁡n=p⁡n⁢E⁡G⁡nq⁡n⁢G⁡n where p, q are polynomials in n, and G is a rational function of n, then degree⁡r≤degree⁡p and degree⁡s≤degree⁡q.
If i=1 then degree⁡v is minimal.
If i=2 then degree⁡u is minimal.
If i=3 then degree⁡u+degree⁡v is minimal, and under this condition, degree⁡v is minimal.
If i=4 then degree⁡u+degree⁡v is minimal, and under this condition, degree⁡u is minimal.
with⁡SumToolsHypergeometric:
ν≔n⁢n+2⁢n−4+sqrt⁡2⁢n−3+sqrt⁡2⁢n+2+sqrt⁡2⁢n+11+sqrt⁡2
ν≔n⁢n+2⁢n−4+2⁢n−3+2⁢n+2+2⁢n+11+2
de≔n−3⁢n−22⁢n+6⁢n+12⁢n−1+sqrt⁡2⁢n+1+sqrt⁡2
de≔n−3⁢n−22⁢n+6⁢n+12⁢n−1+2⁢n+1+2
F≔νde
F≔n⁢n+2⁢n−4+2⁢n−3+2⁢n+2+2⁢n+11+2n−3⁢n−22⁢n+6⁢n+12⁢n−1+2⁢n+1+2
z1,r1,s1,u1,v1≔RationalCanonicalForm1⁡F,n
z1,r1,s1,u1,v1≔1,n−4+2⁢n−3+2,n−3⁢n+6⁢n+12,n+1+22⁢n−12⁢n−22⁢n+1⁢n⁢n+10+2⁢n+9+2⁢n+8+2⁢n+7+2⁢n+6+2⁢n+5+2⁢n+4+2⁢n+3+2⁢n+2+2⁢n+2⁢n−1+2,1
z2,r2,s2,u2,v2≔RationalCanonicalForm2⁡F,n
z2,r2,s2,u2,v2≔1,n+2+2⁢n+11+2,n−3⁢n−22,1,n−2+22⁢n−3+22⁢n+52⁢n+42⁢n+32⁢n+22⁢n+2⁢n−1+2⁢n−4+2⁢n+11⁢n+10⁢n+9⁢n+8⁢n+7⁢n+6⁢n+1⁢n
z3,r3,s3,u3,v3≔RationalCanonicalForm3⁡F,n
z3,r3,s3,u3,v3≔1,n−4+2⁢n+11+2,n−3⁢n+6⁢n+12,n+1+2⁢n−12⁢n−22⁢n+1⁢n,n−2+2⁢n−3+2
z4,r4,s4,u4,v4≔RationalCanonicalForm4⁡F,n
z4,r4,s4,u4,v4≔1,n−4+2⁢n+11+2,n−3⁢n−2⁢n+12,n−1⁢n−2⁢n+1+2,n+5⁢n+4⁢n+3⁢n+2⁢n−2+2⁢n−3+2
Check the result from RationalCanonicalForm[1].
Condition 1 is satisfied.
evalb⁡F=normal⁡z1⁢r1s1⁢subs⁡n=n+1,u1v1u1v1
true
Condition 2 is satisfied.
LREtoolsdispersion⁡r1,s1,n,LREtoolsdispersion⁡s1,r1,n
FAIL,FAIL
Condition 3 is satisfied.
gcd⁡r1,u1⁢subs⁡n=n+1,v1,gcd⁡s1,subs⁡n=n+1,u1⁢v1
1,1
Degrees of the kernel:
degree⁡r1,n,degree⁡r2,n,degree⁡r3,n,degree⁡r4,n
2,2,2,2
degree⁡s1,n,degree⁡s2,n,degree⁡s3,n,degree⁡s4,n
3,3,3,3
The degree of v1 is minimal.
degree⁡v1,n,degree⁡v2,n,degree⁡v3,n,degree⁡v4,n
0,23,2,6
The degree of u2 is minimal.
degree⁡u1,n,degree⁡u2,n,degree⁡u3,n,degree⁡u4,n
19,0,7,3
For i=3,4, the degree of the shell is minimal.
degree⁡u1,n+degree⁡v1,n,degree⁡u2,n+degree⁡v2,n,degree⁡u3,n+degree⁡v3,n,degree⁡u4,n+degree⁡v4,n
19,23,9,9
Abramov, S.A.; Le, H.Q.; and Petkovsek, M. "Rational Canonical Forms and Efficient Representations of Hypergeometric Terms." Proc. ISSAC'2003, pp. 7-14. 2003.
Abramov, S.A., and Petkovsek, M. "Canonical representations of hypergeometric terms." Proc. FPSAC'2001, pp. 1-10. 2001.
See Also
evalb
LREtools[dispersion]
subs
SumTools[Hypergeometric][EfficientRepresentation]
SumTools[Hypergeometric][MultiplicativeDecomposition]
SumTools[Hypergeometric][PolynomialNormalForm]
SumTools[Hypergeometric][SumDecomposition]
Download Help Document