VectorCalculus
eval
evaluation for Vectors
Calling Sequence
Parameters
Description
Examples
eval(v, t=a)
eval(v, eqns)
v
-
Vector(algebraic); Vector or algebraic expression
t
name; usually a name but may be a general expression
a
expression
eqns
list or set; list or set of equations
The eval(v, eqns) command is an extension of the top-level eval command which correctly evaluates free Vectors , rooted Vectors, position Vectors, and VectorFields for the VectorCalculus package. If v is not a Vector, the arguments are passed to the top level eval command.
If v is a rooted Vector then both the root point or origin and the components, corresponding to the coefficients of the basis vectors, are evaluated.
If v is a VectorField, then the components are evaluated and a VectorField is returned. To properly evaluate a VectorField at a point use evalVF.
If v is a free Vector or a position Vector, then the components are evaluated. The type of the Vector does not change.
with⁡VectorCalculus:
Evaluating free Vectors
eval⁡1,t,t2,t=1
v1≔Vector⁡x,y2,z3,coords=cartesianx,y,z
eval⁡v1,x=1,y=2,z=3
Evaluating rooted Vectors: both the root point and the components are evaluated.
v2≔RootedVector⁡point=u,π,u,v,polarr,t
v2≔uv
eval⁡v2,u=1,v=2
12
GetRootPoint⁡eval⁡v2,u=1,v=2
If the components have no variables then the root point is evaluated.
v3≔RootedVector⁡point=s,t,1,2,parabolicu,v
v3≔12
eval⁡v3,s=1,t=π
GetRootPoint⁡eval⁡v3
If the root point has no variables then the components are evaluated.
v4≔RootedVector⁡point=1,π4,π4,u,v,w,sphericalr,p,t
v4≔uvw
eval⁡v4,u=1,v=−1,w=1
1−11
GetRootPoint⁡v4
Evaluating position Vectors
pv1≔PositionVector⁡t,t,polar
pv1≔t⁢cos⁡tt⁢sin⁡t
eval⁡pv1,t=3
pv2≔PositionVector⁡t,vsqrt⁡1+t2,v⁢tsqrt⁡1+t2,cartesianx,y,z
pv2≔tvt2+1v⁢tt2+1
eval⁡pv2,t=3,v=4
Evaluating VectorFields: eval evaluates the components and returns a VectorField.
vf≔VectorField⁡1r2,0,0,sphericalr,p,t
eval⁡vf,r=1
attributes⁡eval⁡vf,r=1
vectorfield,coords=sphericalr,p,t
See Also
VectorCalculus[evalVF]
VectorCalculus[PositionVector]
VectorCalculus[RootedVector]
VectorCalculus[Vector]
VectorCalculus[VectorField]
Download Help Document