WhittakerM
The Whittaker M function
WhittakerW
The Whittaker W function
Calling Sequence
Parameters
Description
Examples
References
WhittakerM(mu, nu, z)
WhittakerW(mu, nu, z)
mu
-
algebraic expression
nu
z
The Whittaker functions WhittakerM(mu, nu, z) and WhittakerW(mu, nu, z) solve the differential equation
y''+−14+μz+14−ν2z2⁢y=0
They can be defined in terms of the hypergeometric and Kummer functions as follows:
WhittakerM⁡μ,ν,z=ⅇ−12⁢z⁢z12+ν⁢hypergeom⁡12+ν−μ,1+2⁢ν,z
WhittakerW⁡μ,ν,z=ⅇ−12⁢z⁢z12+ν⁢KummerU⁡12+ν−μ,1+2⁢ν,z
WhittakerM⁡1,2,0.5
0.1606687379
diff⁡WhittakerW⁡μ,ν,z,z
12−μz⁢WhittakerW⁡μ,ν,z−WhittakerW⁡μ+1,ν,zz
series⁡WhittakerM⁡2,3,x,x
x72−2⁢x927+23⁢x112448+O⁡x132
series⁡WhittakerW⁡−12,−13,x,x
3⁢3⁢Γ⁡232⁢x162⁢π−π⁢3⁢x56Γ⁡232+9⁢3⁢Γ⁡232⁢x764⁢π−3⁢π⁢3⁢x11610⁢Γ⁡232+9⁢3⁢Γ⁡232⁢x13616⁢π−3⁢π⁢3⁢x17640⁢Γ⁡232+27⁢3⁢Γ⁡232⁢x196224⁢π−9⁢π⁢3⁢x236880⁢Γ⁡232+27⁢3⁢Γ⁡232⁢x2561792⁢π−9⁢π⁢3⁢x2967040⁢Γ⁡232+81⁢3⁢Γ⁡232⁢x31646592⁢π−27⁢π⁢3⁢x356239360⁢Γ⁡232+O⁡x376
simplify⁡WhittakerW⁡μ+73,ν,x
−μ−16−ν⁢ν+μ−16⁢x−2⁢μ−83⁢WhittakerW⁡μ−23,ν,x+5⁢μ2+−4⁢x+253⁢μ+x2−ν2−10⁢x3+8936⁢WhittakerW⁡μ+13,ν,x
Abramowitz, M., and Stegun I. Handbook of Mathematical Functions. New York: Dover Publications.
Luke, Y. The Special Functions and Their Approximations. Vol 1. Academic Press, 1969.
See Also
hypergeom
inifcns
KummerU
Download Help Document