Parameter Estimation for an N-Channel Enhancement MOSFET - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Applications and Example Worksheets : Science and Engineering : Parameter Estimation for an N-Channel Enhancement MOSFET

Parameter Estimation for an N-Channel Enhancement MOSFET

The following data of drain current versus gate-to-source voltage has been obtained for an n-channel enhancement mode MOSFET. This worksheet uses this data to determine the least squares curve fit estimate of the SPICE parameters KP (the transconductance parameter) and VTO (zero-bias threshold voltage). It assumes that the device is operating in its saturation mode and that the channel length modulation factor may be neglected.

 

If the device is operating in the saturation region and the channel length modulation factor can be neglected, the drain current, ID, is related to the gate-to-source voltage, VGS, according to the following equation:

ID=KVGSVTO2 

 

Where K = K'/2, and K' is the SPICE parameter KP.

 

restart:withplots:withStatistics:

Experimental Data

VGS_exp2,2.5,3,3.5,4,4.5,5,5.5: 

ID_exp0.306,1.393,3.141,6.618,11.242,15.687,20.93,25.389:

Let's plot the data.

p1plotVGS_exp,ID_exp,style=point :

displayp1

Parameter Estimation via Least-Squares Curve Fitting

IDKVGSVTO2

IDKVGSVTO2

(2.1)

For a basic fit:

eqNonlinearFitID,VGS_exp,ID_exp,VGS

eq1.58405874756309VGS1.421828129762692

(2.2)

You can also customize the output:

resNonlinearFitID,VGS_exp,ID_exp,VGS,output=parametervalues

resK=1.58405874756309,VTO=1.42182812976269

(2.3)

NonlinearFitID,VGS_exp,ID_exp,VGS,output=residualsumofsquares

3.250638736

(2.4)

Visualizing the Solution

Let's plot the best fit equation against the experimental data.

p2ploteq,VGS=minVGS_exp..maxVGS_exp:

displayp1,p2

Fitting a Procedure

You can also fit a procedure (that includes, for example, conditional statements or piecewise equations). The first parameter(s) should be the independent variable(s), while the others should be the empirical parameters

fprocVGS,K,VTO local ID: IDKVGSVTO2; return ID: end proc: 

NonlinearFitf,VGS_exp,ID_exp

1.584058747563091.42182812976269

(4.1)

Minimizing the SSE - the hard way

ID_fVGS,K,VTOK VGSVTO2

ID_fVGS,K,VTOKVGSVTO2

(5.1)

sseprocK,VTO local i; addID_fVGS_expi,K,VTO  ID_expi2,i=1..8  end proc:

Optimization:-MinimizesseK,VTO

3.25063873633627010,K=1.58405878529888,VTO=1.42182800867805

(5.2)