Simply Supported Beam Design with Torsional Loading
Using AISC Steel Shapes v14.1 Data
Introduction
This application performs a design analysis on a simply supported beam with torsional loading for a W10X54 steel beam (as defined by the AISC Steel Shapes Database).
References:
Simplified Design for Torsional Loading of Rolled Steel Members, Lin, P.H., Engineering Journal, AISC, 1977
2010 Specification for Structural Steel Buildings (ANSI/AISC 360-10), Fourth Printing (https://www.aisc.org/content.aspx?id=2884)
You will need to install the AISC Shapes Database package from the MapleCloud before you can use this application.
Load the AISC Package
with⁡AISCShapes:
withUnitsStandard:
Data from the AISC Shapes Database for Steel Shape W10X54
Cw≔PropertyW10X54,Cw;PropertyW10X54,Cw,metadata
Cw≔2320.0⁢in6
Warping constant
JT≔PropertyW10X54,J;PropertyW10X54,J,metadata
JT≔1.82⁢in4
Torsional moment of inertia
d≔PropertyW10X54,d;PropertyW10X54,d,metadata
d≔10.1⁢in
Overall depth of member, or width of shorter leg for angles, or width of the outstanding legs of long legs back-to-back double angles, or the width of the back-to-back legs of short legs back-to-back double angles
Sx≔PropertyW10X54,Sx;PropertyW10X54,Sx,metadata
Sx≔60.0⁢in3
Elastic section modulus about the x-axis
Sy≔PropertyW10X54,Sy;PropertyW10X54,Sy,metadata
Sy≔20.6⁢in3
Elastic section modulus about the y-axis
rx≔PropertyW10X54,rx;PropertyW10X54,rx,metadata
rx≔4.37⁢in
Radius of gyration about the x-axis = sqrt(Ix/A)
A≔PropertyW10X54,A;PropertyW10X54,A,metadata
A≔15.8⁢in2
Cross-sectional area of member
Zx≔PropertyW10X54,Zx;PropertyW10X54,Zx,metadata
Zx≔66.6⁢in3
Plastic section modulus about the x-axis
Ix≔PropertyW10X54,Ix;PropertyW10X54,Ix,metadata
Ix≔303.0⁢in4
Moment of inertia about the x-axis
Iy≔PropertyW10X54,Iy;PropertyW10X54,Iy,metadata
Iy≔103.0⁢in4
Moment of inertia about the y-axis
Parameters
Gravity distributed load:
w≔1.15kipfft:
Lateral point load at the middle:
F≔5kipf:
Torsion at mid-span:
T≔5.1ft kipf:
Axial Load:
P≔96kipf:
Beam length:
L≔15ft:
Beam yield stress:
Fy≔50ksi:
Vertical bending unbraced length:
Lb≔15ft:
Axial vertical unbraced length:
Lx≔15ft:
Axial horizontal unbraced length:
Ly≔7.5ft:
Young's modulus and shear modulus:
E≔29000ksi:
G≔11200ksi:
Torsional property (Phillip, 1977):
λ≔G⋅JTE⋅Cw
0.01740610961⁢1in
Determine Governing Moments at Middle of Span
Flexural moment:
Mx ≔ w⁢L28
32.34⁢foot⁢kipf
My ≔ F⁢L4.0
18.75⁢foot⁢kipf
M0 ≔ T⁢L4⁢d
22.72⁢foot⁢kipf
Philip page 101
β ≔ 4⁢sinh⁡λ⁢L22λ⁢L⁢sinh⁡λ⁢L
β≔0.5850278056
Torsional moment:
MT ≔ β⁢M0
13.29⁢foot⁢kipf
Check Torsional Capacity (AISC 360-10 H3.3 & Philip page 100)
Maximum combined normal stress at the load point:
fbx ≔ MxSx+2⁢MTSy
21.96⁢kipfinch2
Safety factor for compression:
Ω≔1.67:
Fnx ≔ FyΩ
29.94⁢ksi
fbxFnx
0.7333393767
This is less then 1, so it is satisfactory.
Check Combined Compression and Bending Capacity (AISC 360-10, H1)
Mrx ≔ MxSx+2⁢MTSy⁢Sx
109.78⁢foot⁢kipf
Effective length factor:
K≔0.85:
Elastic bucking stress:
Fe ≔ π2⁢EK⁢Lrx2
233.50⁢ksi
Critical stress:
Fcr ≔ 0.658FyFe⁢Fy
45.71⁢ksi
Pn ≔ Fcr⁢A
722.27⁢kipf
Allowable axial strength:
Pc≔PnΩ
432.50⁢kipf
This is greater than 3/4 Pr, so it is satisfactory.
Available flexural strength (Chapter F AISC 360-10):
Mn ≔ min⁡Fy⁢Zx,Fy⁢Sx
250.00⁢foot⁢kipf
Mcx ≔ MnΩ
149.70⁢foot⁢kipf
This is greater than Mrx, so it is satisfactory.
Mcy ≔ MnΩ
These should be below 1 for a satisfactory design.
PPc+89⋅MrxMcx+MyMcy
.99
Determine Deflections
Max twist angle (Lin, p100 eq4) in degrees:
φ ≔ T2⁢G⁢JT⁢λ⋅λ⋅L2−2⋅sinhλ⋅L2sinhλ⋅L⋅sinhλ⋅L2
φ≔0.2304416908
I3 ≔ Ix⁢sin⁡90−φ⁢π1802+Iy⁢cos⁡90−φ⁢π1802
303.00⁢in4
I4 ≔ Ix⁢cos⁡90−φ⁢π1802+Iy⁢sin⁡90−φ⁢π1802
103.00⁢in4
Vertical deflection at the middle:
Δvert ≔ 5⁢w⁢L4384⁢E⁢I3
.15⁢in
Horizontal deflection at the middle:
Δhoriz ≔ F⁢L348⁢E⁢I4
.20⁢in
Download Help Document