A Novel Approach to Stabilize the Re-Entry Path of a Space Shuttle
Introduction
1. Overview of Theory
2. Stability Analysis of an Aerodynamic Maneuverable Re-Entry Vehicle
Stability and robustness are fundamental design requirements of any control system. Consequently, stability analysis is a vital stage in the design and development process of a control system. In addition to providing information about the inherent stability of a system, stability analysis techniques are often employed to gain insight into the degree of stability of a system.
The most common methods used for determining the stability margins of a system, namely gain margin and phase margin, are based on frequency domain approaches such as the Nyquist, Bode, and Nichols method. These methods are limited to systems with less than two adjustable parameters. Systems that have more than two adjustable parameters require more complex control strategies such as the Vishnegradskii diagram, the parameter plane method or the stability equation method. These methods are used to plot the stability boundary of the system and to determine the effects of parameter variation on system stability but give no information about the stability margins (gain margins or phase margins) of the system.
The method described by Chang and Han [1] in their paper has been shown to be an effective method in determining the gain margin and phase margin of a system with adjustable parameters, such as a space shuttle. Their method combines commonly used frequency domain approaches with the parameter plane stability method to obtain boundary plots of constant gain margin and constant phase margin.
[1] Chang, C-H., Han K-W. Gain Margins and Phase Margins for Control Systems with Adjustable Parameters. Journal of Guidance, Control, and Dynamics, (1989): 13(3), 404-408
restart:
1. Overview of the Theory
The following section presents a brief overview of the approach taken by Chang and Han in determining the gain and phase margin of a system with adjustable parameters.
Consider the block diagram of a basic closed-loop control system shown in Figure 1.
Figure 1: Basic Block Diagram of a Closed-Loop System
The open loop transfer function for this system is defined as:
G⁡s=N⁡sD⁡s
Substituting s=j⋅ω into equation (1) yields:
G⁡jω=N⁡jωD⁡jω
Equation (2) can then be rewritten as:
G⁡jω=ℜG⁡jω+ȷ⁢ℑG⁡jω
Expressing equation (3) in terms of its magnitude and phase yields the following equation:
G⁡jω=G⁡jω⁢ⅇȷ⁢Φ
where
Gjω= ℜGjω2+ℑGjω2
and
Φ = ∠Gjω= arctan ℑGjωℜGjω
Combining equations (2) and (4) gives:
D⁡jω⁢G⁡jω⁢ⅇȷ⁢Φ−N⁡ȷ⁢ω=0
Dividing both sides of equation (5) by Gjωⅇj⋅Φ results in:
D⁡jω−N⁡ȷ⁢ωG⁡jω⁢ⅇȷ⁢Φ=0
Let's define:
A=1Gjω
Θ= Φ + 180
where A is the gain margin of the system at Θ = 0, and Θ is the phase margin of the system when A=1.
Then equation (6) can be rewritten as:
D⁡jω+A⁢ⅇ−ȷ⁢Θ⁢N⁡ȷ⁢ω⁢= 0
or as
F⁡jω=1+A⁢ⅇ−ȷ⁢Θ⁢G⁡ȷ⁢ω⁢= 0
The term Aⅇ−j⋅Θ is commonly referred to as the gain-phase margin tester. The gain-phase margin tester can be used to determine the gain and phase margin of a system with adjustable parameters by incorporating it as an additional block in the closed loop system, such as the one shown in Figure 2.
Figure 2: Basic Block Diagram of a Closed-Loop System with Gain-Phase Margin Tester
The gain-phase margin tester can also be expressed as:
A⁢ⅇ−ȷ⁢Θ=A⁢cos⁡Θ+ȷ⁢A⁢sin⁡Θ⁢ = X+jY
where X and Y are:
X=A⁢cos⁡Θ
Y=A⁢sin⁡Θ
Substituting X and Y into equation (8) yields:
F⁡jω=D⁡jω−X+ȷ⁢Y⁢N⁡ȷ⁢ω⁢= 0
which can be expressed in terms of the real and imaginary parts, namely:
F⁡ȷ⁢ω=Fr⁡X,Y,ω−Fi⁡X,Y,ω⁢= 0
Assuming that X and Y are parameters, we obtain the following expressions:
Fr⁡X,Y,ω=D__1⁢= 0+X⁢B__1+Y⁢C__1
Fi⁡X,Y,ω=D__2⁢= 0+X⁢B__2+Y⁢C__2
where B__1, C__1, D__1, B__2, C__2, and D__2 are functions of ω.
Solving equations (14) and (15) simultaneously yields:
X=C1⁢D2−C2⁢D1Δ
Y=−D2⁢B1+D1⁢B2Δ
Δ=B__1⁢C__2−B__2⁢C__1
If the system has adjustable parameters then equation (8) can be written as:
F⁡jω=F⁡α,β,γ,...,A,Θ,ω
Assuming that α and β are linear functions then
Fr⁡α,β,γ,...,A,Θ,ω=D__1⁢= 0+α⁢B__1+β⁢C__1
Fi⁡α,β,γ,...,A,Θ,ω=D__2⁢= 0+α⁢B__2+β⁢C__2
where B__1, C__1, D__1, B__2, C__2, and D__2 are functions of γ, ..., A, Θ, ω.
Solving equations (20) and (21) simultaneously yields:
α=C1⁢D2−C2⁢D1Δ
β=−D2⁢B1+D1⁢B2Δ
If we let A=1 and Θ=0, and set γ... equal to some constants, then as ω varies from 0 to∞ a locus that contains the stability boundary of the system without the gain-phase margin tester can be plotted in the α vs. β plane. This locus can be considered the Nyquist plot of the system passing through the point 1,j0.
If A is assumed equal to a constant value and Θ=0, the locus formed in the α vs. β plane is a boundary of constant gain margin. Similarly, if Θ is assumed to be constant and A=1, then the locus formed is a boundary of constant phase margin. The values of the phase crossover frequency and the gain crossover frequency can be determined by measuring the values of ω on the gain margin boundary and the constant phase margin boundary.
The technique for determining gain and phase margin of a system with adjustable parameters, as elaborated upon in the previous section, will now be applied to the control system of an aerodynamic maneuverable re-entry vehicle. The block diagram corresponding to the control system is shown in Figure 3.
Figure 3: Basic Block Diagram of an Aerodynamic Re-entry Vehicle
The transfer function associated with each block is defined below. The assumption is the system parameters, namely α, β, ϒ, and the frequency ω at which the system is run are all real numbers.
assumeα∷real :assumeβ∷real :assumeω∷real :assumeϒ∷real:
G1≔ Qx__c'=7.7⋅7002s2+2⋅0.65⋅700⋅s+7002
G1≔Qⅆⅆxx__c⁡x=3.7730000×106s2+910.00⁢s+490000
G2≔ x__p'Q=12.2⋅30302⋅s2+5030250302⋅s2+30302
G2≔ⅆⅆxx__p⁡xQ=0.1649402339⁢s2+25300900s2+9180900
G3≔x__px__p'=1s
G3≔x__p⁡xⅆⅆxx__p⁡x=1s
G4≔x__sx__p=50302s2+50302
G4≔x__sx__p=25300900s2+25300900
G5≔θ`'B`x__s=3.09⋅10−4⋅s+3.63⋅s2+9102s2−24.82
G5≔θ⁢'Bx__s=0.0003090000000⁢s+3.63⁢s2+828100s2−615.04
H1≔y__1x__p=ss+ϒ
H1≔y__1x__p=ss+ϒ
H2≔ α
H2≔α
H3≔θ__s'θ__B'=9422s2+2⋅0.5⋅942⋅s+9422
H3≔ⅆⅆxθ__s⁡xⅆⅆxθ__B⁡x=887364s2+942.0⁢s+887364
H4≔β
H4≔β
The transfer function representing GH1 is:
GH1≔normalrhsG1⋅rhsG2⋅rhsG31+rhsG1⋅rhsG2⋅rhsG3⋅rhsH1⋅H2
GH1≔622319.5025⁢s+ϒ⁢s2+2.5300900×107s5+s4⁢ϒ+9.670900×106⁢s3+9.670900×106⁢s2⁢ϒ+910.⁢s4+910.⁢s3⁢ϒ+8.354619000×109⁢s2+8.354619000×109⁢s⁢ϒ+4.498641000×1012⁢s+4.498641000×1012⁢ϒ+622319.5025⁢α⁢s2+1.574524350×1013⁢α⁢s
Similarly, the transfer function for GH2 is:
GH2≔rhsG4⋅rhsG5⋅rhsH3⋅H4
GH2≔6.937392319×109⁢s+3.63⁢s2+828100⁢βs2+25300900⁢s2−615.04⁢s2+942.0⁢s+887364
The transfer function for the simplified model is found by combining the transfer function equations for GH1 and GH2.
GHsimplified≔GH1⋅GH2
GHsimplified≔4.317274537×1015⁢s+ϒ⁢s2+2.5300900×107⁢s+3.63⁢s2+828100⁢βs5+s4⁢ϒ+9.670900×106⁢s3+9.670900×106⁢s2⁢ϒ+910.⁢s4+910.⁢s3⁢ϒ+8.354619000×109⁢s2+8.354619000×109⁢s⁢ϒ+4.498641000×1012⁢s+4.498641000×1012⁢ϒ+622319.5025⁢α⁢s2+1.574524350×1013⁢α⁢s⁢s2+25300900⁢s2−615.04⁢s2+942.0⁢s+887364
To determine the stability of the system, the closed-loop system equation as defined in GHsimplified was modified to accommodate the inclusion of the gain-phase margin tester as defined in equation (9). This results in an equation of the form:
G=Denominator+A⋅cosΘ−j⋅A⋅sinΘ⋅Numerator:
where Denominator and Numerator refer to the denominator and numerator of GHsimplified, respectively. The numerator and denominator of GHsimplified can be extracted using the numer and denom commands.
NumerGHsimplified≔expandnumerGHsimplified,s
NumerGHsimplified≔4.317274537×1015⁢β⁢s6+1.128060664×1023⁢β⁢s4+1.567170657×1016⁢β⁢s5+4.094860209×1023⁢β⁢s3+9.045413424×1028⁢β⁢s2+3.283485073×1029⁢β⁢s+4.317274537×1015⁢β⁢s5⁢ϒ+1.128060664×1023⁢β⁢ϒ⁢s3+1.567170657×1016⁢β⁢s4⁢ϒ+4.094860209×1023⁢β⁢ϒ⁢s2+9.045413424×1028⁢β⁢ϒ⁢s+3.283485073×1029⁢β⁢ϒ
DenomGHsimplified≔expanddenomGHsimplified,s
DenomGHsimplified≔5.338628703×1020⁢s6−6.211871661×1028⁢s2+4.739120291×1017⁢s7+6.512823578×1010⁢s9+3.097497377×1014⁢s8+1852.0⁢s11+3.671576896×107⁢s10+s12+1.006710100×1026⁢s4−1.813067667×1026⁢s3+2.944970779×1023⁢s5−2.174155081×1029⁢α⁢s+3.532359604×1026⁢α⁢s3+4.262926483×1020⁢s5⁢α+1852.0⁢s10⁢ϒ+3.671576896×107⁢s9⁢ϒ+5.862249714×108⁢s8⁢α+3.204232817×1013⁢s7⁢α+s11⁢ϒ+622319.5025⁢s9⁢α+4.739120291×1017⁢s6⁢ϒ+5.338628703×1020⁢s5⁢ϒ+3.752451945×1023⁢s4⁢α+6.512823578×1010⁢s8⁢ϒ+3.097497377×1014⁢s7⁢ϒ+2.966367820×1016⁢s6⁢α+2.944970779×1023⁢s4⁢ϒ−1.813067667×1026⁢s2⁢ϒ+1.006710100×1026⁢s3⁢ϒ−6.211871661×1028⁢s⁢ϒ−2.308020256×1026⁢α⁢s2
Using equations (37) and (38) the closed-loop system equation with the addition of a gain-phase margin tester block can now be obtained.
GH__GainPhaseMarginTester≔DenomGHsimplified+A⋅cosΘ−j⋅A⋅sinΘ⋅NumerGHsimplified
GH__GainPhaseMarginTester≔5.338628703×1020⁢s6−6.211871661×1028⁢s2+A⁢cos⁡Θ−ȷ⁢A⁢sin⁡Θ⁢4.317274537×1015⁢β⁢s6+1.128060664×1023⁢β⁢s4+1.567170657×1016⁢β⁢s5+4.094860209×1023⁢β⁢s3+9.045413424×1028⁢β⁢s2+3.283485073×1029⁢β⁢s+4.317274537×1015⁢β⁢s5⁢ϒ+1.128060664×1023⁢β⁢ϒ⁢s3+1.567170657×1016⁢β⁢s4⁢ϒ+4.094860209×1023⁢β⁢ϒ⁢s2+9.045413424×1028⁢β⁢ϒ⁢s+3.283485073×1029⁢β⁢ϒ+4.739120291×1017⁢s7+6.512823578×1010⁢s9+3.097497377×1014⁢s8+1852.0⁢s11+3.671576896×107⁢s10+s12+1.006710100×1026⁢s4−1.813067667×1026⁢s3+2.944970779×1023⁢s5−2.174155081×1029⁢α⁢s+3.532359604×1026⁢α⁢s3+4.262926483×1020⁢s5⁢α+1852.0⁢s10⁢ϒ+3.671576896×107⁢s9⁢ϒ+5.862249714×108⁢s8⁢α+3.204232817×1013⁢s7⁢α+s11⁢ϒ+622319.5025⁢s9⁢α+4.739120291×1017⁢s6⁢ϒ+5.338628703×1020⁢s5⁢ϒ+3.752451945×1023⁢s4⁢α+6.512823578×1010⁢s8⁢ϒ+3.097497377×1014⁢s7⁢ϒ+2.966367820×1016⁢s6⁢α+2.944970779×1023⁢s4⁢ϒ−1.813067667×1026⁢s2⁢ϒ+1.006710100×1026⁢s3⁢ϒ−6.211871661×1028⁢s⁢ϒ−2.308020256×1026⁢α⁢s2
The frequency response of the modified closed-loop system is obtained by replacing the term s with jω.
GHω__GainPhaseMarginTester≔expandsubss=j⋅ω,GH__GainPhaseMarginTester
GHomega__GainPhaseMarginTester≔5.862249714×108⁢ω8⁢α−ȷ⁢ω11⁢ϒ+3.752451945×1023⁢ω4⁢α+6.512823578×1010⁢ω8⁢ϒ+2.944970779×1023⁢ω4⁢ϒ−2.174155081×1029⁢ȷ⁢α⁢ω−3.532359604×1026⁢ȷ⁢α⁢ω3+4.262926483×1020⁢ȷ⁢ω5⁢α+3.671576896×107⁢ȷ⁢ω9⁢ϒ−3.204232817×1013⁢ȷ⁢ω7⁢α+622319.5025⁢ȷ⁢ω9⁢α+5.338628703×1020⁢ȷ⁢ω5⁢ϒ−3.097497377×1014⁢ȷ⁢ω7⁢ϒ−1.006710100×1026⁢ȷ⁢ω3⁢ϒ−6.211871661×1028⁢ȷ⁢ω⁢ϒ−1.128060664×1023⁢A⁢sin⁡Θ⁢β⁢ϒ⁢ω3+9.045413424×1028⁢A⁢sin⁡Θ⁢β⁢ϒ⁢ω+4.317274537×1015⁢ȷ⁢A⁢sin⁡Θ⁢β⁢ω6−1.128060664×1023⁢ȷ⁢A⁢sin⁡Θ⁢β⁢ω4+9.045413424×1028⁢ȷ⁢A⁢sin⁡Θ⁢β⁢ω2−3.283485073×1029⁢ȷ⁢A⁢sin⁡Θ⁢β⁢ϒ−5.338628703×1020⁢ω6+6.211871661×1028⁢ω2−3.671576896×107⁢ω10+4.317274537×1015⁢ȷ⁢A⁢cos⁡Θ⁢β⁢ω5⁢ϒ−1.128060664×1023⁢ȷ⁢A⁢cos⁡Θ⁢β⁢ϒ⁢ω3+9.045413424×1028⁢ȷ⁢A⁢cos⁡Θ⁢β⁢ϒ⁢ω−1.567170657×1016⁢ȷ⁢A⁢sin⁡Θ⁢β⁢ω4⁢ϒ+4.094860209×1023⁢ȷ⁢A⁢sin⁡Θ⁢β⁢ϒ⁢ω2+3.097497377×1014⁢ω8+ω12+1.006710100×1026⁢ω4−1852.0⁢ω10⁢ϒ−4.739120291×1017⁢ω6⁢ϒ−2.966367820×1016⁢ω6⁢α+1.813067667×1026⁢ω2⁢ϒ+2.308020256×1026⁢α⁢ω2−4.739120291×1017⁢ȷ⁢ω7+6.512823578×1010⁢ȷ⁢ω9−1852.0⁢ȷ⁢ω11+1.813067667×1026⁢ȷ⁢ω3+2.944970779×1023⁢ȷ⁢ω5+1.567170657×1016⁢ȷ⁢A⁢cos⁡Θ⁢β⁢ω5−4.094860209×1023⁢ȷ⁢A⁢cos⁡Θ⁢β⁢ω3+3.283485073×1029⁢ȷ⁢A⁢cos⁡Θ⁢β⁢ω+1.567170657×1016⁢A⁢cos⁡Θ⁢β⁢ω4⁢ϒ−4.094860209×1023⁢A⁢cos⁡Θ⁢β⁢ϒ⁢ω2+4.317274537×1015⁢A⁢sin⁡Θ⁢β⁢ω5⁢ϒ−4.317274537×1015⁢A⁢cos⁡Θ⁢β⁢ω6+1.128060664×1023⁢A⁢cos⁡Θ⁢β⁢ω4−9.045413424×1028⁢A⁢cos⁡Θ⁢β⁢ω2+3.283485073×1029⁢A⁢cos⁡Θ⁢β⁢ϒ+1.567170657×1016⁢A⁢sin⁡Θ⁢β⁢ω5−4.094860209×1023⁢A⁢sin⁡Θ⁢β⁢ω3+3.283485073×1029⁢A⁢sin⁡Θ⁢β⁢ω
To see the effects of parameter variations on the system, the equations , and defined respectively in (22), (23) and (24), will be calculated.
Recalling equations (20) and (21), respectively and , note that:
the term B1 corresponds to the real coefficients of equation Frα, β, γ, ..., A, Θ, ω that are multiplied by the term A⋅cosΘ,
the term C1 corresponds to the coefficients of equation Frα, β, γ, ..., A, Θ, ω that are multiplied by the term A⋅sinΘ,
the term D1 corresponds to the coefficients of equation Frα, β, γ, ..., A, Θ, ω that are independent of A⋅cosΘ and A⋅sinΘ.
the term B2 corresponds to the coefficients of equation Fiα, β, γ, ..., A, Θ, ω that are multiplied by the term A⋅cosΘ,
the term C2 corresponds to the coefficients of equation Fiα, β, γ, ..., A, Θ, ω that are multiplied by the term A⋅sinΘ,
the term D2 corresponds to the coefficients of equation Fiα, β, γ, ..., A, Θ, ω that are independent of A⋅cosΘ and A⋅sinΘ.
The real coefficients corresponding to are extracted using the following commands:
RealValues≔seqmapevalc,ℜopGHω__GainPhaseMarginTesterJJ,JJ=1..nopsGHω__GainPhaseMarginTester:
RealCoeff≔coeffsaddRealValuesJJ,JJ=1..nopsGHω__GainPhaseMarginTester,α,β:
Similarly, the imaginary coefficients corresponding to are extracted using the following commands:
ImaginaryValues≔seqmapevalc,ℑopGHω__GainPhaseMarginTesterJJ,JJ=1..nopsGHω__GainPhaseMarginTester:
ImaginaryCoeff≔coeffsaddImaginaryValuesJJ,JJ=1..nopsGHω__GainPhaseMarginTester,α,β:
Using the sort command the values for B1, C1, D1, B2, C2, D2, Δ1 and Δ2 can be easily obtained.
B1≔sortRealCoeff2,ω
B1≔5.862249714×108⁢ω8−2.966367820×1016⁢ω6+3.752451945×1023⁢ω4+2.308020256×1026⁢ω2
C1≔sortRealCoeff3,ω
C1≔−4.317274537×1015⁢A⁢cos⁡Θ⁢ω6+4.317274537×1015⁢A⁢sin⁡Θ⁢ϒ⁢ω5+1.567170657×1016⁢A⁢sin⁡Θ⁢ω5+1.567170657×1016⁢A⁢cos⁡Θ⁢ϒ⁢ω4+1.128060664×1023⁢A⁢cos⁡Θ⁢ω4−1.128060664×1023⁢A⁢sin⁡Θ⁢ϒ⁢ω3−4.094860209×1023⁢A⁢sin⁡Θ⁢ω3−4.094860209×1023⁢A⁢cos⁡Θ⁢ϒ⁢ω2−9.045413424×1028⁢A⁢cos⁡Θ⁢ω2+9.045413424×1028⁢A⁢sin⁡Θ⁢ϒ⁢ω+3.283485073×1029⁢A⁢sin⁡Θ⁢ω+3.283485073×1029⁢A⁢cos⁡Θ⁢ϒ
D1≔sortRealCoeff1,ω
D1≔ω12−3.671576896×107⁢ω10−1852.0⁢ϒ⁢ω10+6.512823578×1010⁢ϒ⁢ω8+3.097497377×1014⁢ω8−5.338628703×1020⁢ω6−4.739120291×1017⁢ϒ⁢ω6+2.944970779×1023⁢ϒ⁢ω4+1.006710100×1026⁢ω4+6.211871661×1028⁢ω2+1.813067667×1026⁢ϒ⁢ω2
B2≔sortImaginaryCoeff2,ω
B2≔622319.5025⁢ω9−3.204232817×1013⁢ω7+4.262926483×1020⁢ω5−3.532359604×1026⁢ω3−2.174155081×1029⁢ω
C2≔sortImaginaryCoeff3,ω
C2≔4.317274537×1015⁢A⁢sin⁡Θ⁢ω6+4.317274537×1015⁢ϒ⁢A⁢cos⁡Θ⁢ω5+1.567170657×1016⁢A⁢cos⁡Θ⁢ω5−1.567170657×1016⁢ϒ⁢A⁢sin⁡Θ⁢ω4−1.128060664×1023⁢A⁢sin⁡Θ⁢ω4−1.128060664×1023⁢ϒ⁢A⁢cos⁡Θ⁢ω3−4.094860209×1023⁢A⁢cos⁡Θ⁢ω3+4.094860209×1023⁢ϒ⁢A⁢sin⁡Θ⁢ω2+9.045413424×1028⁢A⁢sin⁡Θ⁢ω2+9.045413424×1028⁢ϒ⁢A⁢cos⁡Θ⁢ω+3.283485073×1029⁢A⁢cos⁡Θ⁢ω−3.283485073×1029⁢ϒ⁢A⁢sin⁡Θ
D2≔sortImaginaryCoeff1,ω
D2≔−1852.0⁢ω11−ϒ⁢ω11+6.512823578×1010⁢ω9+3.671576896×107⁢ϒ⁢ω9−4.739120291×1017⁢ω7−3.097497377×1014⁢ϒ⁢ω7+2.944970779×1023⁢ω5+5.338628703×1020⁢ϒ⁢ω5+1.813067667×1026⁢ω3−1.006710100×1026⁢ϒ⁢ω3−6.211871661×1028⁢ϒ⁢ω
Δ≔B1⋅C2−B2⋅C1
Δ≔5.862249714×108⁢ω8−2.966367820×1016⁢ω6+3.752451945×1023⁢ω4+2.308020256×1026⁢ω2⁢4.317274537×1015⁢A⁢sin⁡Θ⁢ω6+4.317274537×1015⁢ϒ⁢A⁢cos⁡Θ⁢ω5+1.567170657×1016⁢A⁢cos⁡Θ⁢ω5−1.567170657×1016⁢ϒ⁢A⁢sin⁡Θ⁢ω4−1.128060664×1023⁢A⁢sin⁡Θ⁢ω4−1.128060664×1023⁢ϒ⁢A⁢cos⁡Θ⁢ω3−4.094860209×1023⁢A⁢cos⁡Θ⁢ω3+4.094860209×1023⁢ϒ⁢A⁢sin⁡Θ⁢ω2+9.045413424×1028⁢A⁢sin⁡Θ⁢ω2+9.045413424×1028⁢ϒ⁢A⁢cos⁡Θ⁢ω+3.283485073×1029⁢A⁢cos⁡Θ⁢ω−3.283485073×1029⁢ϒ⁢A⁢sin⁡Θ−622319.5025⁢ω9−3.204232817×1013⁢ω7+4.262926483×1020⁢ω5−3.532359604×1026⁢ω3−2.174155081×1029⁢ω⁢−4.317274537×1015⁢A⁢cos⁡Θ⁢ω6+4.317274537×1015⁢A⁢sin⁡Θ⁢ϒ⁢ω5+1.567170657×1016⁢A⁢sin⁡Θ⁢ω5+1.567170657×1016⁢A⁢cos⁡Θ⁢ϒ⁢ω4+1.128060664×1023⁢A⁢cos⁡Θ⁢ω4−1.128060664×1023⁢A⁢sin⁡Θ⁢ϒ⁢ω3−4.094860209×1023⁢A⁢sin⁡Θ⁢ω3−4.094860209×1023⁢A⁢cos⁡Θ⁢ϒ⁢ω2−9.045413424×1028⁢A⁢cos⁡Θ⁢ω2+9.045413424×1028⁢A⁢sin⁡Θ⁢ϒ⁢ω+3.283485073×1029⁢A⁢sin⁡Θ⁢ω+3.283485073×1029⁢A⁢cos⁡Θ⁢ϒ
Using the values obtained for B1, C1, D1, B2, C2, D2, Δ1 and Δ2, the stability boundary plots for the system in the α vs. β plane can be obtained for different values of α and β. For the sake of efficiency, Maple procedures to calculate the values of α and β are generated from the equations for α and β as defined in equations (22) and (23).
α_proc≔codegenmakeprocrhs,parameters=ϒ∷numeric,A∷numeric,Θ∷numeric,ω∷numeric:
α_optimize≔codegenoptimizeα_proc:
β_proc≔codegenmakeprocrhs,parameters=ϒ∷numeric,A∷numeric,Θ∷numeric,ω∷numeric:
β_optimize≔codegenoptimizeβ_proc:
The stability curves shown below assume the value of ϒ to be 30. The Maple code used to generated the plots is contained in the following code edit region.
Stability Boundary Plots
Boundary Plots of Constant Phase Margins
Boundary Plots of Constant Gain Margins
Combining the boundary plots of constant phase margins and constant gain margins that lie within the stable region yields the plot shown below. Each region has a specified gain and phase margin. For instance, the region defined by M__1 will have a gain margin of A>3 and A<1/3, and a phase margin of 30°<Θ <45°. While the region as defined by M__2 will have a gain margin of A>3 and 1/3<A<1/2, and a phase margin of 15°<Θ <30°.
The phase crossover frequency values can be obtained for any point along the constant gain margin boundary curves. Similarly, the gain crossover frequency values can be obtained for any point along the constant phase margin boundary curves. The phase crossover frequency values and the gain crossover frequency values for 6 data points are listed in the table below. The code used to obtain these values can be found in the following code edit region.
Point
Value
Crossover Frequency
A
α= 5.80, β= 1.98
ωA = 64.6 (phase crossover frequency)
B
α= 6.32, β= 3.45
ωB = 20.8 (phase crossover frequency)
C
α= 9.20, β= 5.48
ωC = 16.9 (phase crossover frequency)
D
α= 25.80, −2⁢`*`⁡Dgamma~rho,Dgamma~nu,Dgamma~lambda
ωD = 116 (gain crossover frequency)
E
α= 59.93, β= 43.04
ωE = 152 (gain crossover frequency)
F
α= 133.58, β=100.41
ωF = 187 (gain crossover frequency)
Download Help Document