convert/hypergeom
convert functions in an expression to hypergeometric form
Calling Sequence
Parameters
Description
Examples
convert( expr, hypergeom, opt_1, opt_2, ... )
expr
-
expression
opt_i
optional arguments, see convert/to_special_function
Converts the functions found in expr, including sum and Sum, to their hypergeometric forms when possible.
For sums, no attempt is made to ensure that the resulting hypergeometric function is convergent or terminates.
convert/hypergeom reacts to the setting of the environment variable _EnvFormal (for more information, see sum/details). When that variable is set to true, the conversion will be attempted regardless of whether the original sum may be divergent or not.
Sum⁡1k⁢binomial⁡k+n,k,k=1..∞
∑k=1∞⁡1k⁢k+nk
convert⁡,hypergeomassuming0<n
1n
BesselJ⁡a,z
=convert⁡,hypergeom
BesselJ⁡a,z=za⁢hypergeom⁡,a+1,−z24Γ⁡a+1⁢2a
LegendreP⁡a,b,z
LegendreP⁡a,b,z=z+1b2⁢hypergeom⁡−a,a+1,1−b,12−z2z−1b2⁢Γ⁡1−b
KummerU⁡a,b,z
KummerU⁡a,b,z=Γ⁡−1+b⁢hypergeom⁡a−b+1,2−b,zz−1+b⁢Γ⁡a+Γ⁡1−b⁢hypergeom⁡a,b,zΓ⁡a−b+1
For negative a we have
=convert⁡,hypergeomassuminga::negint
KummerU⁡a,b,z=pochhammer⁡a−b+1,−a⁢hypergeom⁡a,b,z
Elementary functions are not converted by default (see convert/to_special_function)
convert⁡sin⁡z,hypergeom
sin⁡z
To convert them use either of the optional arguments: include=elementary, or include=all
=convert⁡,hypergeom,include=all
sin⁡z=z⁢hypergeom⁡,32,−z24
Parametric or divergents sums may not be converted by default. Set _EnvFormal to true, or use appropriate assumptions, to obtain the desired conversion:
S≔Sum⁡xnn,n=1..∞
S≔∑n=1∞⁡xnn
convert⁡S,hypergeom
∑n=1∞⁡xnn
convert⁡S,hypergeomassumingabs⁡x<1
−ln⁡1−x
_EnvFormal≔true
See Also
convert
convert/MeijerG
convert/to_special_function
hypergeom
simplify/hypergeom
Download Help Document