Special Functions
This worksheet gives definitions, properties, and graphs of some of the special mathematical functions available in Maple.
Typesetting:-EnableTypesetRuleTypesetting:-SpecialFunctionRules:
The Airy Wave Functions
The Airy Ai and Bi functions, AiryAi(z) and AiryBi(z) respectively, solve the differential equation: ∂2∂z⁢∂z⁢y⁡z−z⁢y⁡z=0
Floating-point Evaluation
AiryAi⁡3.2
0.004567439274
Differentiation
The derivatives of the Airy functions are denoted by AiryAi(1, z) and AiryBi(1, z):
ⅆⅆz⁢AiryAi⁡z,ⅆⅆz⁢AiryBi⁡z
Ai′⁡z,Bi′⁡z
ⅆⅆz⁢AiryAi⁡1,z,ⅆⅆz⁢AiryBi⁡1,z
z⁢Ai⁡z,z⁢Bi⁡z
Graphing
plot⁡AiryAi⁡z,AiryBi⁡z,z=−3..1,legend=Ai,Bi
plot⁡seq⁡diff⁢AiryAiz,z$i,i=0..4,z=−3..1,legend=Ai,1st Derivative,2nd Derivative,3rd Derivative,4th Derivative
The Anger and Weber Functions
The Anger J function, AngerJ(nu, z), solves the inhomogeneous Bessel equation: z2⁢∂2∂z⁢∂z⁢y⁡z+z⁢ⅆⅆz⁢y⁡z+z2−ν2⁢y⁡z=z−ν⁢sin⁡π⁢νπ
and the Weber E function, WeberE(nu, z), solves the inhomogeneous Bessel equation: z2⁢∂2∂z⁢∂z⁢y⁡z+z⁢ⅆⅆz⁢y⁡z+z2−ν2⁢y⁡z=ν−z⁢cos⁡π⁢ν−ν+zπ
AngerJ⁡2.0,3.2,BesselJ⁡2.0,3.2
0.4835277001,0.4835277001
AngerJ⁡0.5,3.2,BesselJ⁡0.5,3.2
0.05605486408,−0.02603667926
WeberE⁡0.0,3.2,−StruveH⁡0.0,3.2
−0.4933957395,−0.4933957395
WeberE⁡1.0,0.5,evalf⁡2π−StruveH⁡1.0,0.5
0.5844460281,0.5844460280
The derivatives with respect to the variable can be expressed in terms of algebraic expressions in trigonometric functions and the Anger and Weber functions themselves with shifted parameters:
diffAngerJnu,z,z
−Jν+1⁡z+ν⁢Jν⁡zz−sin⁡ν⁢ππ⁢z
diff⁢WeberEnu,z,z
−Eν+1⁡z+ν⁢Eν⁡zz−1−cos⁡ν⁢ππ⁢z
plot⁡AngerJ⁡2.5,z,WeberE⁡2.5,z,z=0..10,legend=J,E
plot⁡AngerJ⁡2.5,z,ⅆⅆz⁢AngerJ⁡2.5,z,z=0..10,legend=J,1st Derivative
plot⁡seq⁡AngerJ⁡i2,z,i=0..4,z=0..10,legend=J 0,J 1/2,J 1,J 3/2,J 2
The Bessel Functions
The Bessel J and Y functions of the first kind, BesselJ(nu, z) and BesselY(nu,z), satisfy the differential equation: z2⁢∂2∂z⁢∂z⁢y⁡z+z⁢ⅆⅆz⁢y⁡z+z2−ν2⁢y⁡z=0
The Bessel I and K functions of the second kind, BesselI(nu,z) and BesselK(nu,z), satisfy the modified differential equation: z2⁢∂2∂z⁢∂z⁢y⁡z+z⁢ⅆⅆz⁢y⁡z−z2+ν2⁢y⁡z=0
The Hankel H(1) and H(2) functions, HankelH1(nu,z) and HankelH2(nu,z) are related to the Bessel functions of the first kind by: HankelH1⁡ν,z=BesselJ⁡ν,z+I⁢BesselY⁡ν,z HankelH2⁡ν,z=BesselJ⁡ν,z−I⁢BesselY⁡ν,z
HankelH1⁡0.3,0.5,BesselJ⁡0.3,0.5+I⁢BesselY⁡0.3,0.5
0.7002604885−0.8080475075⁢I,0.7002604885−0.8080475075⁢I
The derivatives of the Bessel and Hankel functions may be expressed as algebraic expressions in themselves with shifted parameters:
∂∂z⁢BesselJ⁡ν,z
−Jν+1⁡z+ν⁢Jν⁡zz
ⅆⅆz⁢BesselY⁡1,z
Y0⁡z−Y1⁡zz
∂∂z⁢BesselI⁡ν,z
Iν+1⁡z+ν⁢Iν⁡zz
∂∂z⁢BesselK⁡ν,z
−Kν+1⁡z+ν⁢Kν⁡zz
∂∂z⁢HankelH1⁡ν,z
−Hν+11⁡z+ν⁢Hν1⁡zz
∂∂z⁢HankelH2⁡ν,z
−Hν+12⁡z+ν⁢Hν2⁡zz
plot⁡BesselJ⁡10.2,z,BesselY⁡10.2,z,BesselJ⁡10.2,z2+BesselY⁡10.2,z2,z=0..30,legend=J,Y,sqrt(J^2+Y^2),view=0..30,−0.6..0.6
plot⁡seq⁡BesselJ⁡i,z,i=0..6,z=0..10
plot⁡seq⁡BesselJ⁡ν,i,i=0..6,ν=−4..10,view=−4..10,−1..1,numpoints=100
The Kummer (Confluent Hypergeometric) Functions
The Kummer M and U functions, KummerM(mu, nu, z) and KummerU(mu, nu, z), are solutions of the differential equation z⁢∂2∂z⁢∂z⁢y⁡z+ν−z⁢y⁡z−μ⁢y⁡z=0 which can be written as:
KummerM⁡μ,ν,z=∑k=0∞pochhammer⁡μ,k⁢zkpochhammer⁡ν,k⁢k!
Asymptotic approximations:
KummerM⁡0.3,0.5,0.1,Γ⁡0.5⁢ⅇ0.1⁢0.10.3−0.5Γ⁡0.3
1.062681649,1.037780156
KummerM⁡0.3,0.5,100.0,Γ⁡0.5⁢ⅇ100.0⁢100.00.3−0.5Γ⁡0.3
6.349477824⁢1042,6.340508722⁢1042
KummerM⁡0.3,0.5,−0.1,Γ⁡0.5⁢0.1−0.3Γ⁡0.5−0.3
0.9425221107,0.7703399627
KummerM⁡0.3,0.5,−100.0,Γ⁡0.5⁢100.0−0.3Γ⁡0.5−0.3
0.09721559118,0.09698005550
The derivatives of the Kummer functions may be expressed as algebraic expressions in themselves with shifted parameters:
∂∂z⁢KummerM⁡μ,ν,z
z+μ−ν⁢M⁡μ,ν,z+ν−μ⁢M⁡−1+μ,ν,zz
∂∂z⁢KummerU⁡μ,ν,z
z+μ−ν⁢U⁡μ,ν,z−U⁡−1+μ,ν,zz
plot⁡seq⁡KummerM⁡i2,0.5,z,i=−8..0,z=0..8,view=0..8,−10..14,color=seq⁡COLOR⁡RGB,i8,0,1−i8,i=0..8
plot3d⁡KummerM⁡μ,ν,1,μ=−5..5,ν=−5..5,view=−5..5,−5..5,−5..5,grid=100,100,style=PATCHNOGRID,axes=framed
The Parabolic Cylinder Functions
The cylinder U and V functions, CylinderU(a, z) and CylinderV(a,z) respectively, are solutions to the differential equation: ∂2∂z⁢∂z⁢y⁡z−z24+a⁢y⁡z=0 The Whittaker's parabolic D function, CylinderD(a,z), is related to the above by the following expression
CylinderD⁡−a−12,z=CylinderU⁡a,z which are equal when a=−14.
CylinderU⁡3.2,1.2,CylinderD⁡−3.7,1.2,CylinderV⁡3.2,1.2
0.04426305425,0.04426305425,4.724868148
CylinderD⁡−0.25,−5.2,CylinderU⁡−0.25,−5.2
177.8936549,177.8936549
The derivatives of the cylinder functions can be written as simple algebraic expressions of themselves with modified parameters:
∂∂z⁢CylinderU⁡a,z
−z⁢U⁡a,z2−a+12⁢U⁡a+1,z
∂∂z⁢CylinderV⁡a,z
−z⁢V⁡a,z2+V⁡a+1,z
The derivative of the Whittaker parabolic D function is cleaner than the derivative of the cylinder U function:
∂∂z⁢CylinderD⁡a,z
z⁢Da⁡z2−Da+1⁡z
plot⁡'CylinderU⁡1.3,z,CylinderV⁡1.3,z,CylinderD⁡1.3,z',z=−1..2,legend=U,V,D
CyU:=plot3d⁡'CylinderU⁡a,z',a=−2..2,z=−1..2,color=red:CyV≔plot3d'CylinderV⁡a,z',a=−2..2,z=−1..2,color=blue:CyD≔plot3d'CylinderD⁡a,z',a=−2..2,z=−1..2,color=green:plotsdisplayCyU,CyV,CyD,axes=framed
The Elliptic Functions
The incomplete elliptic F function of the first kind, EllipticF(z,k), and complete elliptic K and CK functions of the first kind, EllipticK(k) and EllipticCK(k), are defined as: EllipticF⁡z,k=∫0z11−t2⁢1−k2⁢t2ⅆt EllipticK⁡k=EllipticF⁡1,k EllipticCK⁡k=EllipticF⁡1,1−k2 The incomplete elliptic E function of the second kind, EllipticE(z,k), and complete elliptic E and CE functions of the second kind, EllipticE(k) and EllipticCE(k), are defined as: EllipticE⁡z,k=∫0z1−k2⁢t21−t2ⅆt EllipticE⁡k=EllipticE⁡1,k EllipticCE⁡k=EllipticE⁡1,1−k2 The incomplete elliptic Pi function of the third kind, EllipticPi(z,nu,k), and complete elliptic Pi and CPi functions of the second kind, EllipticPi(nu,k) and EllipticCPi(nu,k), are defined as: EllipticPi⁡z,ν,k=∫0z11−ν⁢t2⁢1−t2⁢1−k2⁢t2ⅆt EllipticPi⁡ν,k=EllipticPi⁡1,ν,k EllipticCPi⁡ν,k=EllipticPi⁡1,ν,1−k2
EllipticK⁡0.2,EllipticF⁡1.0,0.2
1.586867847,1.586867847+−0.⁢I
EllipticF⁡0.8,0.2,EllipticPi⁡0.8,0.0,0.2
0.9318236075,0.9318236075
EllipticPi⁡1.0,0.7,0.2,EllipticPi⁡0.7,0.2
2.905870485,2.905870485
The derivatives of the elliptic functions of the first and second kinds are in the form of algebraic expressions in themselves:
ⅆⅆz⁢EllipticK⁡z
E⁡z−z2+1⁢z−K⁡zz
ⅆⅆz⁢EllipticE⁡z
E⁡zz−K⁡zz
The derivatives of the elliptic functions of the third kind are algebraic expressions in all three kinds of elliptic functions:
ⅆⅆz⁢EllipticPi⁡z,0
π4⁢1−z32
∂∂z⁢EllipticPi⁡z,ν
Π⁡z,ν⁢ν2−z22⁢1−z⁢ν2−z⁢z−K⁡ν2⁢1−z⁢z−E⁡ν2⁢1−z⁢ν2−z
plot⁡EllipticK⁡z,EllipticE⁡z,EllipticPi⁡z,0.5,z=0..1,legend=K,E,Pi,view=0..1,1..3
plot3d⁡EllipticF⁡z,k,EllipticE⁡z,k,EllipticPi⁡z,0.5,k,z=0..0.8,k=0.8..1,axes=framed
The Jacobi Elliptic Functions
The Jacobi sn, cn, dn, ..., dc functions, JacobiSN(z,k), JacobiCN(z,k), JacobiDN(z,k), ..., JacobiDC(z,k) are defined in terms of the Jacobi am amplitude function JacobiAM(z, k): JacobiSN⁡z,k=sin⁡JacobiAM⁡z,k JacobiCN⁡z,k=cos⁡JacobiAM⁡z,k JacobiDN⁡z,k=1−k2⁢JacobiSN⁡z,k2 . . . JacobiDC⁡z,k=JacobiDN⁡z,kJacobiCN⁡z,k
JacobiSN⁡0.3,0.,JacobiCN⁡0.3,0.,JacobiDN⁡0.3,0.
0.2955202067,0.9553364891,1.
sin⁡0.3,cos⁡0.3,1.
JacobiSN⁡0.3,1.,JacobiCN⁡0.3,1.,JacobiDN⁡0.3,1.
0.2913126125,0.9566279119,0.9566279119
tanh⁡0.3,sech⁡0.3
0.2913126125,0.9566279119
The derivatives of the Jacobi elliptic functions are expressions in other Jacobi elliptic functions:
∂∂z⁢JacobiSN⁡z,k
cn⁡z|k⁢dn⁡z|k
∂∂z⁢JacobiDC⁡z,k
sc⁡z|k⁢−k2+1cn⁡z|k
plot⁡JacobiSN⁡z,0.25,JacobiCN⁡z,0.25,JacobiDN⁡z,0.25,z=0..4⁢EllipticK⁡0.25,legend=sn,cn,dn
plot⁡JacobiSC⁡z,0.5,JacobiCS⁡z,0.5,JacobiCD⁡z,0.5,JacobiDC⁡z,0.5,z=0..4⁢EllipticK⁡0.5,legend=sc,cs,cd,dc,view=0..4⁢EllipticK⁡0.5,−2..2,discont=true
The Jacobi Theta Functions
The Jacobi θ1, θ2, θ3, and θ4 functions JacobiTheta1(z, q), JacobiTheta2(z, q), JacobiTheta3(z, q), and JacobiTheta4(z, q) are defined as: JacobiTheta1⁡z,q=2⁢q14⁢∑n=0∞−1n⁢qn⁢n+1⁢sin⁡2⁢n+1⁢z
JacobiTheta2⁡z,q=2⁢q14⁢∑n=0∞qn⁢n+1⁢cos⁡2⁢n+1⁢z JacobiTheta3⁡z,q=1+2⁢∑n=1∞qn2⁢cos⁡2⁢n⁢z JacobiTheta4⁡z,q=1+2⁢∑n=1∞−1n⁢qn2⁢cos⁡2⁢n⁢z
JacobiTheta2⁡0,0.24+JacobiTheta4⁡0,0.24,JacobiTheta3⁡0,0.24
3.876855127,3.876855123
evalf⁡ⅆⅆz⁢JacobiTheta1⁡z,0.4z=0.0|ⅆⅆz⁢JacobiTheta1⁡z,0.4z=0.0,JacobiTheta2⁡0,0.4⁢JacobiTheta3⁡0,0.4⁢JacobiTheta4⁡0,0.4
0.8594691945,0.8594692103
JacobiTheta4⁡0.0,0.1,JacobiTheta4⁡2⁢EllipticK⁡0.1,0.1
0.8001999980,0.8002248520
The derivatives of the Jacobi theta functions are less elegant than other special functions:
∂∂z⁢JacobiTheta1⁡z,q
2⁢K⁡k⁡q⁢ϑ1⁡z,q⁢Z⁡2⁢K⁡k⁡q⁢z−π2π,k⁡q+ϑ4⁡z,q⁢ϑ2⁡z,qϑ3⁡z,qπ
∂∂z⁢JacobiTheta2⁡z,q
2⁢K⁡k⁡q⁢ϑ2⁡z,q⁢Z⁡2⁢K⁡k⁡q⁢zπ,k⁡q−ϑ3⁡z,q⁢ϑ1⁡z,qϑ4⁡z,qπ
plot⁡JacobiTheta1⁡z,0.2,JacobiTheta2⁡z,0.2,JacobiTheta3⁡z,0.2,JacobiTheta4⁡z,0.2,z=0..4⁢EllipticK⁡0.2,legend=1,2,3,4
Re1≔plot3dReJacobiTheta1⁡a+b⁢I,0.2,a=0..4⁢EllipticK⁡0.2,b=−1..1,color=red:Im1≔plot3dImJacobiTheta1⁡a+b⁢I,0.2,a=0..4⁢EllipticK0.2,b=−1..1,color=blue:plotsdisplayRe1,Im1,axes=framed
The Riemann and Hurwitz Zeta Functions
The Riemann ζ function Zeta may be defined as ζ⁡s=∑k=1∞1ks or ζ⁡s=∏p11−1ps where the product is over all primes p. The Hurwitz Zeta function is defined as: ζ⁡0,s,ν=∑k=0∞1k+νs
ζ⁡1.3
3.931949212
ζ⁡0,1.3,1
ζ⁡0,1.3,1.1
3.761371026
The derivative of the Zeta function is denoted as Zeta(1,z):
ⅆⅆz⁢ζ⁡z
ζ1⁡z
∂∂z⁢ζ⁡0,z,ν
ζ1⁡z,ν
plot⁡ζ⁡z,z=−10..10,view=−10..10,−10..10,discont=true
plot⁡Reζ⁡12+I⁢z,Imζ⁡12+I⁢z,z=−20..20,legend=Real Part,Imaginary Part
The Jacobi Zeta Function
The Jacobi Zeta function is defined by JacobiZeta⁡z,k=∂∂z⁢ln⁡JacobiTheta4⁡π⁢z2⁢EllipticK⁡k,EllipticNome⁡k
JacobiZeta⁡0.2,0.3
0.008868168440
The derivatives of the Jacobi Zeta function can be written in terms of elliptic functions:
∂∂z⁢JacobiZeta⁡z,k
dn⁡z|k2−E⁡kK⁡k
plot⁡seq⁡JacobiZeta⁡z,i10,i=1..9,z=0..4⁢EllipticK⁡0.
plot3d⁡JacobiZeta⁡z,k,z=0..10,k=−0.99..0.99,'axes=framed','grid'=100,100,'style=PATCHNOGRID','lightmodel=light4'
The Kelvin Functions
The Kelvin Ber and Bei functions, KelvinBer(nu, z) and KelvinBei(nu,z), are defined by the following equations: KelvinBer⁡ν,z+I⁢KelvinBei⁡ν,x=BesselJ⁡ν,z⁢ⅇ3⁢I⁢π4
KelvinBer⁡ν,z−I⁢KelvinBei⁡ν,x=BesselJ⁡ν,z⁢ⅇ−3⁢I⁢π4
The Kelvin Ker and Kei functions, KelvinKer(nu,z) and KelvinKei(nu,z), are defined by the following equations: KelvinKer⁡ν,z+I⁢KelvinKei⁡ν,x=ⅇ−ν⁢π⁢I2⁢BesselK⁡ν,z⁢ⅇI⁢π4
KelvinKer⁡ν,z−I⁢KelvinKei⁡ν,z=ⅇ−ν⁢π⁢I2⁢BesselK⁡ν,z⁢ⅇ−I⁢π4
The Kelvin Her and Hei functions, KelvinHer(nu,z) and KelvinHei(nu,z), are defined by the following equations: KelvinHer⁡ν,z+I⁢KelvinHei⁡ν,z=HankelH1⁡ν,z⁢ⅇ3⁢I⁢π4
KelvinHer⁡ν,z−I⁢KelvinHei⁡ν,z=HankelH2⁡ν,z⁢ⅇ−3⁢I⁢π4
KelvinBer⁡1.0,3.2+I⁢KelvinBei⁡1.0,3.2,BesselJ⁡1.0,3.2⁢ⅇ3⁢I⁢π4
−1.848052313−0.7875000586⁢I,−1.848052312−0.7875000568⁢I
The derivatives of the Kelvin functions can be written in terms of algebraic expressions in themselves with shifted parameters:
∂∂z⁢KelvinBer⁡ν,z
2⁢berν+1⁡z+beiν+1⁡z2+ν⁢berν⁡zz
∂∂z⁢KelvinKer⁡ν,z
2⁢kerν+1⁡z+keiν+1⁡z2+ν⁢kerν⁡zz
∂∂z⁢KelvinHer⁡ν,z
2⁢herν+1⁡z+heiν+1⁡z2+ν⁢herν⁡zz
plot⁡KelvinBer⁡2.5,z,KelvinBei⁡2.5,z,KelvinKer⁡2.5,z,KelvinKei⁡2.5,z,KelvinHer⁡2.5,z,KelvinHei⁡2.5,z,z=0..10,legend=Ber,Bei,Ker,Kei,Her,Hei,view=0..10,−10..10
plot⁡seq⁡KelvinBer⁡i2,z,i=0..4,z=0..10,legend=Ber 0,Ber 1/2,Ber 1,Ber 3/2,Ber 2,view=0..10,−50..50
plot3d⁡KelvinBer⁡ν,z,ν=0..10,z=0..5,axes=framed
The Legendre Functions
The Legendre P and Q functions of the first and second kinds, LegendreP(nu, z) and LegendreQ(nu, z), solve the differential equation: 1−z2⁢∂2∂z⁢∂z⁢y⁡z−2⁢z⁢ⅆⅆz⁢y⁡z+ν⁢ν+1⁢y⁡z=0 The associated Legendre P and Q functions of the first and second kinds, LegendreP(nu, mu, z) and LegendreQ(nu, mu, z), solve the differential equation:
1−z2⁢∂2∂z⁢∂z⁢y⁡z−2⁢z⁢ⅆⅆz⁢y⁡z+ν⁢ν+1−μ21−z2⁢y⁡z=0 The associated case simplifies to the regular case when μ=0.
LegendreP⁡3.2,5.2,LegendreP⁡3.2,0.0,5.2
531.9471184,531.9471184
LegendreQ⁡3.2,0.1,5.2,LegendreQ⁡3.2,5.2
0.00005407404071+0.00001756972088⁢I,0.00004980176423
The derivative of the Legendre functions can be written as algebraic expressions in themselves with shifted parameters:
∂∂z⁢LegendreP⁡ν,z
ν+1⁢Pν+1⁡z−ν+1⁢z⁢Pν⁡zz2−1
∂∂z⁢LegendreQ⁡ν,z
ν+1⁢Qν+1⁡z−ν+1⁢z⁢Qν⁡zz2−1
∂∂z⁢LegendreP⁡ν,μ,z
ν−μ+1⁢Pν+1μ⁡z−ν+1⁢z⁢Pνμ⁡zz2−1
∂∂z⁢LegendreQ⁡ν,μ,z
ν−μ+1⁢Qν+1μ⁡z−ν+1⁢z⁢Qνμ⁡zz2−1
plot⁡LegendreP⁡1.5,z,LegendreQ⁡1.5,z,z=−3..3,legend=P,Q
plot3dLegendreP⁡ν,z,LegendreQ⁡ν,z,ν=−2..2,z=1..3,axes=framed,view=−2..2,1..3,−5..5
The Lommel Functions
The Lommel s and S functions, LommelS1(mu, nu, z) and LommelS2(nu, z), are defined by the following equations: z2⁢∂2∂z⁢∂z⁢y⁡z+z⁢ⅆⅆz⁢y⁡z+z2−ν2⁢y⁡z=zμ+1
The difference between the Anger J and Bessel J functions is approximately equal to the second expression in terms of Lommel S functions:
L1 ≔ AngerJν,z−BesselJν,z,sin⁡ν⁢π⁢LommelS1⁡0,ν,zπ⁢z−ν⁢sin⁡ν⁢π⁢LommelS1⁡−1,ν,zπ⁢z2
L1≔Jν⁡z−Jν⁡z,sin⁡ν⁢π⁢tan⁡ν⁢π2⁢Jν⁡z−Eν⁡z2⁢z+sin⁡ν⁢π⁢cot⁡ν⁢π2⁢Jν⁡z+Eν⁡z2⁢z2
evalf⁡eval⁡L1,ν=1.5,z=100.0
−0.00313575834,−0.0005779109147
L2 ≔WeberEν,z+BesselYν,z,−1+cos⁡ν⁢π⁢LommelS2⁡0,ν,zπ⁢ν−ν⁢1−cos⁡ν⁢π⁢LommelS2⁡−1,ν,zπ⁢z2
L2≔Eν⁡z+Yν⁡z,−1+cos⁡ν⁢π⁢Jν⁡z−Jν⁡z⁢tan⁡ν⁢π2−Yν⁡z−Eν⁡z2⁢ν−1−cos⁡ν⁢π⁢Jν⁡z−Jν⁡z⁢cot⁡ν⁢π2−Yν⁡z−Eν⁡z2⁢z2
evalf⁡eval⁡L2,ν=1.5,z=100.2
−0.00322468841,−0.002118098484
The derivative of the Lommel functions can be written in terms of algebraic expressions in themselves with shifted parameters:
∂∂z⁢LommelS1⁡μ,ν,z
−ν⁢sμ,ν+⁡zz+μ+ν−1⁢sμ−1,−1+ν+⁡z
∂∂z⁢LommelS2⁡μ,ν,z
−ν⁢sμ,ν−⁡zz+μ+ν−1⁢sμ−1,−1+ν−⁡z
plot3d⁡LommelS2⁡1.5,ν,z,ν=0..5,z=0..5,axes=framed,grid=100,100,view=0..5,0..5,−10..100,style=PATCHNOGRID
The Weierstrass Functions
The Weierstrass P, P', ζ, and σ functions, WeierstrassP(z, g2, g3), WeierstrassPPrime(z, g2, g3), WeierstrassZeta(z, g2, g3), and WeierstrassSigma(z, g2, g3) may be defined as follows: WeierstrassP⁡z,g2,g3=1z2+∑w1z−w2−1w2 WeierstrassPPrime⁡z,g2,g3=∂∂z⁢WeierstrassPPrime⁡z,g2,g3 WeierstrassZeta⁡z,g2,g3=−∫0zWeierstrassP⁡t,g2,g3ⅆt and, WeiertrassSigma⁡z,g2,g3=ⅇ∫0zWeierstrassZeta⁡t,g2,g3ⅆt
WeierstrassP⁡0.2,0.8,0.6,WeierstrassP⁡0.1,0.4,0.32.2
25.00163432,25.0000502678311
WeierstrassPPrime⁡0.2,0.4,0.6,WeierstrassPPrime⁡0.1,0.2,0.32.3
−249.9913140,−249.9997446
WeierstrassZeta⁡0.2,0.8,0.6,WeierstrassZeta⁡0.1,0.4,0.32.
4.999891962,4.99999665666235
WeierstrassSigma⁡0.2,0.4,0.6,WeierstrassSigma⁡0.1,0.2,0.3⋅2.
0.1999994576,0.1999999833
The derivatives of the various Weierstrass functions can be written in terms of simple algebraic expressions of other Weierstrass functions:
∂∂z⁢WeierstrassP⁡z,g2,g3
𝒫′⁡z;g2,g3
∂∂z⁢WeierstrassPPrime⁡z,g2,g3
6⁢𝒫⁡z;g2,g32−g22
∂∂z⁢WeierstrassZeta⁡z,g2,g3
−𝒫⁡z;g2,g3
∂∂z⁢WeierstrassSigma⁡z,g2,g3
ζ⁡z;g2,g3⁢σ⁡z;g2,g3
plot⁡WeierstrassP⁡z,0.5,0.1,WeierstrassPPrime⁡z,0.5,0.1,WeierstrassZeta⁡z,0.5,0.1,WeierstrassSigma⁡z,0.5,0.1,z=−3..3,legend=P,P',zeta,sigma,view=−3..3,−10..10
plot3d⁡ReWeierstrassP⁡a+b⁢I,0.3,0.5,a=−2..2,b=−2..2,axes=framed,view=−2..2,−2..2,−4..4
The Whittaker Functions
The Whittaker M and W functions, WhittakerM(mu, nu, z) and WhittakerW(mu, nu, z), solve the differential equation: ∂2∂z⁢∂z⁢y⁡z+−14+μz+14−ν2z2⁢y⁡z=0
They are related to each other by:
WhittakerW⁡μ,ν,z=Γ⁡−2⁢ν⁢WhittakerM⁡μ,ν,zΓ⁡12−ν−μ+Γ⁡2⁢ν⁢WhittakerM⁡μ,−ν,zΓ⁡12+ν−μ
WhittakerW⁡0.3,0.1,1.2
0.5694807360
Γ⁡−2⋅0.1⁢WhittakerM⁡0.3,0.1,1.2Γ⁡12−0.3−0.1+Γ⁡2⋅0.1⁢WhittakerM⁡0.3,−0.1,1.2Γ⁡12+0.1−0.3
0.5694807362
The derivatives of the Whittaker functions can be written as algebraic expressions in themselves with a shifted first parameter:
∂∂z⁢WhittakerM⁡μ,ν,z
12−μz⁢Mμ,ν⁡z+12+ν+μ⁢Mμ+1,ν⁡zz
∂∂z⁢WhittakerW⁡μ,ν,z
12−μz⁢Wμ,ν⁡z−Wμ+1,ν⁡zz
plot⁡WhittakerM⁡1.3,0.5,z,WhittakerW⁡1.3,0.5,z,z=0..10,legend=M,W
plot⁡seq⁡seq⁡WhittakerW⁡1.3+i⋅0.2,1.5+j⋅0.2,z,i=0..1,j=0..1,z=0..10,view=0..10,0..6
WhM:=plot3d⁡WhittakerM⁡μ,ν,1.0,μ=0..1,ν=0..1,color=red:WhW≔plot3dWhittakerW⁡μ,ν,1.0,μ=0..1,ν=0..1,color=blue:plotsdisplayWhM,WhW,axes=framed
For more information, consult the help pages for the individual functions.
Return to Index for Example Worksheets
Download Help Document