Solving Abel's ODEs of the Second Kind, Class C
Description
Examples
The general form of Abel's equation, second kind, class C is given by:
Abel_ode2C := (g1(x)*y(x)+g0(x))*diff(y(x),x) = f3(x)*y(x)^3 + f2(x)*y(x)^2 + f1(x)*y(x) + f0(x);
Abel_ode2C≔g1⁡x⁢y⁡x+g0⁡x⁢ⅆⅆxy⁡x=f3⁡x⁢y⁡x3+f2⁡x⁢y⁡x2+f1⁡x⁢y⁡x+f0⁡x
where f3(x), f2(x), f1(x), f0(x), g1(x) and g0(x) are arbitrary functions. See Differentialgleichungen, by E. Kamke, p. 28. There is as yet no general solution for this ODE.
with⁡DEtools,odeadvisor
odeadvisor
All ODEs of type Abel, second kind, can be rewritten as ODEs of type Abel, first kind, using the following transformation:
with⁡PDEtools,dchange
dchange
ITR≔x=t,y⁡x=1u⁡t⁢g1⁡t−g0⁡tg1⁡t
new_ode≔dchange⁡ITR,Abel_ode2C,u⁡t,t:
new_ode≔collect⁡diff⁡u⁡t,t=solve⁡new_ode,diff⁡u⁡t,t,u⁡t
new_ode≔ⅆⅆtu⁡t=g0⁡t3⁢f3⁡t−g0⁡t2⁢g1⁡t⁢f2⁡t+g0⁡t⁢g1⁡t2⁢f1⁡t−f0⁡t⁢g1⁡t3⁢u⁡t3g1⁡t2+−3⁢g0⁡t2⁢f3⁡t+2⁢g0⁡t⁢g1⁡t⁢f2⁡t+g0⁡t⁢g1⁡t⁢ⅆⅆtg1⁡t−g1⁡t2⁢f1⁡t−g1⁡t2⁢ⅆⅆtg0⁡t⁢u⁡t2g1⁡t2+3⁢g0⁡t⁢f3⁡t−g1⁡t⁢f2⁡t−g1⁡t⁢ⅆⅆtg1⁡t⁢u⁡tg1⁡t2−f3⁡tg1⁡t2
odeadvisor⁡new_ode,u⁡t,Abel
_Abel
See Also
DEtools
dsolve
quadrature
linear
separable
Bernoulli
exact
homogeneous
homogeneousB
homogeneousC
homogeneousD
homogeneousG
Chini
Riccati
Abel
Abel2A
rational
Clairaut
dAlembert
sym_implicit
patterns
odeadvisor,types
Download Help Document