Bessel and Modified Bessel ODEs
Description
Examples
The general form of the Bessel ODE is given by the following:
Bessel_ode := x^2*diff(y(x),x,x)+x*diff(y(x),x)+(x^2-n^2)*y(x);
Bessel_ode≔x2⁢ⅆ2ⅆx2y⁡x+x⁢ⅆⅆxy⁡x+−n2+x2⁢y⁡x
The general form of the modified Bessel ODE is given by the following:
modified_Bessel_ode := x^2*diff(y(x),x,x)+x*diff(y(x),x)-(x^2+n^2)*y(x);
modified_Bessel_ode≔x2⁢ⅆ2ⅆx2y⁡x+x⁢ⅆⅆxy⁡x−n2+x2⁢y⁡x
where n is an integer. See Abramowitz and Stegun - `Handbook of Mathematical Functions`, section 9.6.1. The solutions for these ODEs are expressed using the Bessel functions in the following examples.
with⁡DEtools,odeadvisor
odeadvisor
odeadvisor⁡Bessel_ode
_Bessel
odeadvisor⁡modified_Bessel_ode
_Bessel,_modified
The Bessel ODEs can be solved for in terms of Bessel functions:
dsolve⁡Bessel_ode
y⁡x=c__1⁢BesselJ⁡n,x+c__2⁢BesselY⁡n,x
dsolve⁡modified_Bessel_ode
y⁡x=c__1⁢BesselI⁡n,x+c__2⁢BesselK⁡n,x
See Also
DEtools
dsolve
quadrature
missing
reducible
linear_ODEs
exact_linear
exact_nonlinear
sym_Fx
linear_sym
Bessel
Painleve
Halm
Gegenbauer
Duffing
ellipsoidal
elliptic
erf
Emden
Jacobi
Hermite
Lagerstrom
Laguerre
Liouville
Lienard
Van_der_Pol
Titchmarsh
odeadvisor,types
Download Help Document