pochhammer
general pochhammer function
Calling Sequence
Parameters
Description
Examples
pochhammer(z, a)
z
-
expression
a
The pochhammer symbol is defined for a positive integer n and complex number z as
pochhammer⁡z,n=z⁢z+1⁢...⁢z+n−1
This is extended analytically to complex n by using the formula
pochhammer⁡z,a=Γ⁡z+aΓ⁡z
At all points z,a such that z and z+a are positive integers, this is equivalent to:
pochhammer⁡z,a=limt→0⁡Γ⁡z+a+tΓ⁡z+t
In the case that z is a non-positive integer, pochhammer(z,a) is defined by this limit.
In the case that both z and z+a are non-positive integers, Maple also signals the invalid_operation numeric event, allowing the user to control this singular behavior by catching the event. See numeric_events for more information.
pochhammer⁡5,3
210
pochhammer⁡z,2
pochhammer⁡z,−3
1pochhammer⁡−3+z,3
pochhammer⁡2,I
Γ⁡2+I
NumericStatus⁡invalid_operation=false:
pochhammer⁡−3,2
6
NumericStatus⁡invalid_operation=false
invalid_operation=true
pochhammer⁡0,0
1
NumericStatus⁡invalid_operation
true
diff⁡pochhammer⁡a,x,x
pochhammer⁡a,x⁢Ψ⁡x+a
diff⁡pochhammer⁡a,x,a
pochhammer⁡a,x⁢Ψ⁡x+a−Ψ⁡a
series⁡pochhammer⁡a,x,x,3
1+Ψ⁡a⁢x+Ψ⁡1,a2+Ψ⁡a22⁢x2+O⁡x3
pochhammer⁡x,5
expand⁡
x5+10⁢x4+35⁢x3+50⁢x2+24⁢x
pochhammer⁡2,13
8⁢π⁢327⁢Γ⁡23
evalf⁡
1.190639350
pochhammer⁡−3.7+2.2⁢I,1.5+2.7⁢I
−0.0005620896042+0.01961129135⁢I
convert⁡pochhammer⁡a,x,Γ
Γ⁡x+aΓ⁡a
convert⁡pochhammer⁡a,x,binomial
a+x−1a−1⁢x!
convert⁡pochhammer⁡a,x,factorial
a+x−1!a−1!
See Also
convert
diff
evalf
expand
GAMMA
initialfunctions
NumericStatus
series
Download Help Document