powseries
evalpow
general evaluator for expressions, which can be formal power series, polynomials, or functions
Calling Sequence
Parameters
Description
Examples
evalpow(expr)
expr
-
any arithmetic expression involving formal power series, polynomials, or functions that is acceptable for power series package
The function evalpow(expr) evaluates the arithmetic expression expr and then returns an unnamed power series.
The following operators can be used: +, −, ⁢, /, and ^.
Also, functions may be composed with each other. For example, f⁡g can be used.
The other functions that can be used in evalpow are:
powexp
powinv
powlog
powneg
powrev (reversion)
powdiff (first derivative)
powint (first integral)
powquo (quotient)
powsub (subtract)
powsin
powcos
powtan
powsec
powcsc
powcot
powsinh
powcosh
powtanh
powsech
powcsch
powcoth
powsqrt(square root)
powadd
multiply
Note that the evalpow also accepts the standard forms, or the inner MAPLE forms for some of the above functions. For example, exp, or Exp for powexp, Diff for powdiff, but NOT diff.
The command with(powseries,evalpow) allows the use of the abbreviated form of this command.
with⁡powseries:
powcreate⁡f⁡n=f⁡n−1n,f⁡0=1:
powcreate⁡g⁡n=g⁡n−12,g⁡0=0,g⁡1=1:
powcreate⁡h⁡n=h⁡n−15,h⁡0=1:
k≔evalpow⁡f3+g−powquo⁡h,f:
tpsform⁡k,x,5
245⁢x+23350⁢x2+72731500⁢x3+5217115000⁢x4+O⁡x5
b≔evalpow⁡Diff⁡powlog⁡1+x:
c≔tpsform⁡b,x,6
c≔1−x+x2−x3+x4−x5+O⁡x6
e≔evalpow⁡Tan⁡1+x:
f≔tpsform⁡e,x,3
f≔sin⁡1cos⁡1+cos⁡1+sin⁡12cos⁡1cos⁡1⁢x+sin⁡1⁢cos⁡1+sin⁡12cos⁡1cos⁡12⁢x2+O⁡x3
g≔tpsform⁡evalpow⁡sinh⁡x,x,8
g≔x+16⁢x3+1120⁢x5+15040⁢x7+O⁡x8
h≔evalpow⁡powadd⁡powexp⁡x,powpoly⁡1+x,x,powlog⁡1+x:
m≔tpsform⁡h,x,8
m≔2+3⁢x+12⁢x3−524⁢x4+524⁢x5−119720⁢x6+103720⁢x7+O⁡x8
See Also
powseries[inverse]
powseries[powadd]
powseries[powcreate]
powseries[powexp]
powseries[powsin]
powseries[reversion]
Download Help Document