surd
non-principal root function
Calling Sequence
Parameters
Description
Examples Using surd
surd(x, n)
x
-
any algebraic expression
n
any algebraic expression, understood to be an integer
For a complex number x and integer n, surd(x, n) computes the nth root of x whose (complex) argument is closest to that of x. Ties are broken in such a way that the function x -> surd(x,n) is continuous in a counter-clockwise manner onto its branch cuts (that is, continuous in the direction of increasing complex argument).
In particular, if n is odd then if x>=0 then surd(x,n) = x^(1/n) and if x<0 then surd(x,n) = -(-x)^(1/n).
surd(-1, 3);
−1
surd( 8, 3);
2
surd(-8, 3);
−2
surd(-1, 2);
I
surd(1+2*I,3);
1+2⁢I13
surd( x, n);
xn
convert((6), power);
x1n
Maple simplifies the expression before converting. Constants will still be written with fractional exponents.
convert((9*x)^(1/3), surd);
323⁢x3
convert(3^(1/3)*x^(1/2)*a^b+f((-2)^(1/5)*x^(1/n)), surd);
313⁢x⁢ab+f⁡−215⁢x1n
int(surd(x^2,3)*(3*x^3-2*x^2+x-1), x=-2..2);
−612⁢22355
Note the differences among the outputs of the surd, ^, and root commands.
(8)^(1/3); root(8, 3); surd(8, 3);
813
(8.0)^(1/3); root(8.0, 3); surd(8.0, 3);
2.000000000
(-8)^(1/3); root(-8, 3); surd(-8, 3);
−813
2⁢−113
(-8.0)^(1/3); root(-8.0, 3); surd(-8.0, 3);
1.000000000+1.732050807⁢I
−2.000000000
See Also
^
convert
RealDomain
root
Download Help Document