type/realalgnum
check for an object of type realalgnum (real algebraic number)
Calling Sequence
Parameters
Description
Subtypes
Supertypes
Examples
type(x, realalgnum)
x
-
any expression
The type realalgnum forms a representation of real algebraic numbers.
The type( x, 'realalgnum' ) function returns true if one of the following holds:
x is rational,
x is of the form RootOf( p, c .. d ) where c≤d are rational numbers isolating a root of p, and p is a non-linear univariate polynomial in _Z with coefficients of type realalgnum, or
x is a sum, product, or quotient of expressions of type realalgnum.
The type realalgnum is defined and used in the RootFinding and QuantifierElimination packages.
type/rational
type/algnum
with⁡RootFinding:
type⁡12,realalgnum
true
type⁡RootOf⁡_Z2−2,1..2,realalgnum
type⁡RootOf⁡_Z2−5⁢RootOf⁡_Z3−9,2..3,3..4,realalgnum
type⁡RootOf⁡_Z2−2,1..2RootOf⁡_Z2−3,1..2,realalgnum
type⁡RootOf⁡_Z2−2,1..2+RootOf⁡_Z2−3,1..2⁢RootOf⁡_Z3−2,1..2,realalgnum
type⁡1.34,realalgnum
false
type⁡∞,realalgnum
type⁡1+I,realalgnum
type⁡x,realalgnum
The only RootOf selector accepted is a range of rational numbers:
type⁡RootOf⁡_Z2−2,realalgnum
type⁡RootOf⁡_Z2−y,index=real1,realalgnum
type⁡RootOf⁡_Z2−2,2,realalgnum
type⁡RootOf⁡_Z2−2,index=1,realalgnum
type⁡RootOf⁡_Z2−2,1.1..2.3,realalgnum
Non-rational (sub-)expressions are not accepted:
type⁡RootOf⁡_Z23−2,1..2,realalgnum
type⁡RootOf⁡_Z2−2,1..213,realalgnum
See Also
QuantifierElimination[PartialCylindricalAlgebraicDecompose]
QuantifierElimination[QuantifierEliminate]
RootFinding[EvaluateAtRoot]
RootFinding[RefineRoot]
RootOf
Download Help Document