Symbolic Integration
Indefinite integration
Definite integration
The capabilities of finding indefinite integrals in Maple have been improved. The following integrals could not be computed in previous versions of Maple. In particular, this applies to many integrands involving inverse hyperbolic functions, such as the following:
∫arcsinhxx ⅆx
−12⁢arcsinh⁡x2+arcsinh⁡x⁢ln⁡1−x−x2+1+polylog⁡2,x+x2+1+arcsinh⁡x⁢ln⁡1+x+x2+1+polylog⁡2,−x−x2+1
ⅆⅆx
−arcsinh⁡xx2+1+ln⁡1−x−x2+1x2+1+arcsinh⁡x⁢−1−xx2+11−x−x2+1−1+xx2+1⁢ln⁡1−x−x2+1x+x2+1+ln⁡1+x+x2+1x2+1+arcsinh⁡x⁢1+xx2+11+x+x2+1−−1−xx2+1⁢ln⁡1+x+x2+1−x−x2+1
radnormal
arcsinh⁡xx
∫arccothx3ⅆx
arccoth⁡x3⁢x−1+2⁢arccoth⁡x3−3⁢arccoth⁡x2⁢ln⁡1−1x−1x+1−6⁢arccoth⁡x⁢polylog⁡2,1x−1x+1+6⁢polylog⁡3,1x−1x+1−3⁢arccoth⁡x2⁢ln⁡1+1x−1x+1−6⁢arccoth⁡x⁢polylog⁡2,−1x−1x+1+6⁢polylog⁡3,−1x−1x+1
radnormalⅆⅆx
arccoth⁡x3
∫arctanhtanhb x+a2x ⅆx
ln⁡x⁢arctanh⁡tanh⁡b⁢x+a2+b2⁢x2⁢ln⁡x−32⁢b2⁢x2−2⁢b⁢ln⁡x⁢arctanh⁡tanh⁡b⁢x+a⁢x+2⁢b⁢arctanh⁡tanh⁡b⁢x+a⁢x
arctanh⁡tanh⁡b⁢x+a2x
Some other types of integrands are covered by the improvements as well.
∫ln⁡x+an2x+b2ⅆx
−ln⁡x+an2x+b+2⁢n⁢ln⁡x+an⁢ln⁡x+ba−b−2⁢n⁢ln⁡x+an⁢ln⁡x+aa−b−2⁢n2⁢ln⁡x+b⁢ln⁡x+aa−ba−b−2⁢n2⁢dilog⁡x+aa−ba−b+n2⁢ln⁡x+a2a−b
normalⅆⅆx
ln⁡x+an2x+b2
More compact results
Some integrals that used to be expressed in terms of lengthy csgn expressions are now are given in more compact form.
∫x arctantanx3ⅆx
12⁢x2⁢arctan⁡tan⁡x3−12⁢x3⁢arctan⁡tan⁡x2+14⁢x4⁢arctan⁡tan⁡x−120⁢x5
x⁢arctan⁡tan⁡x3
Definite integrals can now also be computed for some non-smooth integrands, for which previous versions of Maple could only compute an indefinite integral.
∫−∞∞x−11/3x2+1ⅆx
−3⁢∑_R=RootOf⁡23328⁢_Z6+216⁢_Z3+1_R⁢ln⁡6+_R⁢ln⁡−216⁢_R4−_R−3⁢∑_R=RootOf⁡23328⁢_Z6+216⁢_Z3+1_R⁢ln⁡6+_R⁢ln⁡216⁢_R4+_R
radnormalevalcallvalues
16⁢22/3⁢π⁢3+3
Download Help Document